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A Random-Coefficients Discrete-Choice Normal Model of Demand 

Margaret M. Cigno, Elena S. Patel and Edward S. Pearsall1 

 

1. Introduction 

In this paper we provide the technical details of the demand model and econometric 
method we have used to estimate price elasticities for U.S. postal services in a companion paper 
Cigno et al (2012), “Estimates of U.S. Postal Price Elasticities of Demand Derived from a 
Random-Coefficients Discrete-Choice Normal Model”. 

Conventional econometric approaches typically fail to yield useable estimates of price 
elasticities when they are applied to demand systems with many similar products such as the 
markets for automobiles, breakfast cereals and postal services. To correctly represent the effects 
of substitution possibilities among the products, each price should appear in every demand 
equation of the model. This makes the number of cross-price elasticities large except for models 
with very few products.  Unfortunately, the prices of similar products tend to be highly 
correlated within a sample.  In practice, the equations used to describe demand must be overly-
restrictive with respect to the prices in order to avoid near multi-co-linearity when the model is 
fit.  Often, each equation of a conventional model is specified with its own-price but without the 
entire set of cross prices.  The econometrics then yields an incomplete and inconsistent set of 
parameter estimates including the price elasticities. 

A possible solution to the estimation problem is to fit a Random-Coefficients Discrete-
Choice Logit model.  The past decade of empirical demand research in industrial organization 
has been dominated by the estimation of such models following the method of Berry, Levinsohn 
and Pakes (BLP 1995).2   Their model describes individual behavior yet can be fit with only 
market-level price and share data in combination with observable product characteristics, 
population demographics and, when necessary, an effective set of instrumental variables.  The 
model is attractive because demand elasticities derived from the model are capable of 
representing any demand behavior, yet are sufficiently restricted that the estimates usually 
conform well to a priori expectations of signs and magnitudes. Most recent applications of the 
BLP methodology have followed the “Practioner’s Guide” and have used software developed by 
Nevo (2000a and 2000b).   

 
However, the BLP/Nevo model is not without drawbacks that seriously limit its use. 

Although the model has been applied to small purchases (Nevo’s example is breakfast cereals), 
the model is actually designed for “large ticket” items such as automobiles.  The literature 

                                            
1 Margaret M. Cigno is the Director of the Office of Accountability and Compliance (OAC) of the U.S. 
Postal Regulatory Commission (PRC).  Elena S. Patel is an economist and member of the OAC staff.  
Edward S. Pearsall is an economist and consultant to the PRC.  He can be reached at 
espearsall@verizon.net. The views expressed in this paper are those of its authors and do not 
necessarily represent the opinions of the PRC. 
2 An excellent recent survey of modern econometric models of demand behavior may be found in Nevo 
(2011).  This paper also contains a nearly complete bibliography of the major literature regarding the 
Random-Coefficients Discrete-Choice Logit model. 
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provides little justification for the extension to frequent and non-exclusive choices of small items 
such as a household’s annual purchases of postal services.  Furthermore, the computational 
demands of the BLP/Nevo estimation methodology are extreme.  To fit a multi-product model to 
a modest sample can require weeks of computation time using a dedicated personal computer 
with no assurance of ultimate success.   

 
In this paper we develop a model, similar in most respects to the BLP/Nevo model, which 

we call the Random-Coefficients Discrete-Choice Normal model.  Unlike the BLP/Nevo model, 
our model describes discrete choices at the margin and is directly applicable to multiple 
purchases of small items.  We replace the demographics variables of the BLP/Nevo model with 
their principal components.  The random elements of the coefficients are then assumed to be 
independent and identically distributed (i.i.d.) from standardized Normal distributions.  With 
these changes a simple single-variable numerical integration replaces a tedious and far less 
accurate simulation employed in the BLP/Nevo methodology.  In applications involving 15 
products and 40-year time series, our model has been successfully fit in about 12 hours using a 
personal computer and a purpose-written Lotus 123 worksheet. 

 
This paper follows a road map previously traced by BLP and Nevo. We begin by 

presenting the conceptual indirect utility equation and its distribution assumptions.  Next the 
model is transformed into an observationally equivalent model by replacing the demographics 
variables with their principal components. We then show that when the household-level 
disturbances are assumed to be independently drawn from standard Normal distributions, the 
transformed model may be solved for the market shares of the products by a single-variable 
numerical integration over the range [-∞,∞].  Solving the shares model yields the mean indirect 
utilities of the products in each time period (or market).  The demand elasticities for the model 
may also be retrieved by numerical integration.  Finally, we supply a summary description of the 
estimation strategy used to fit the model by least squares.  Our strategy is a simplified version of 
the Generalized Method of Moments methodology proposed by BLP and Nevo.  However, our 
simplifications to the model make it possible to rely on the Newton-Raphson method to make the 
calculations more efficiently.  

2. Indirect Utility 

Following BLP/Nevo, we define the indirect utility to a household from the purchase and 
consumption of an additional unit of one of several named products plus an “outside good”. The 
outside good represents the possibility that the household’s best option may be to not purchase 
an additional unit of any of the named products.3 Specifically, the indirect utility to household ݅ 
from consum urin   ing one more unit of product ݆ d g period  is ݐ

௜ܷ௝ ൌ ௝ߦ  ൅  ൫ ௜ܻ ൅ ௜ܥ െ ௝ܲ൯൫ߙ ൅ Π௬ ܦ௜൯ ൅ ௝ܺሺߚ  ௜௝ߝ 

Eqn (1) applies to every time period (or market) ݐ ൌ 1, … , ܶ to every household ݅ ൌ 1, … ,  and ܫ
to every product ݆ ൌ 0,1, … , ݆ ,including the outside good ,ܬ ൌ 0. The time period index ݐ has 

൅ Π௫ܦ௜ሻ ൅ ௝ܼߛ௝ ൅ (1)  

                                            
3 To estimate market shares for the outside good, it is usually necessary to make an assumption about 
the size of the markets. This can be done in many ways, all of which are somewhat arbitrary. 
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been dropped from the equation to simplify notation. We also simplify notation by assuming that 
the same households are present in every time period. 

 Eqn (1) is a linear utility function with random coefficients and two mean-centered 
disturbances. The two disturbances are ߦ௝, a disturbance to the mean indirect utility for every 
household that occurs from the purchase of product ݆, and ߝ௜௝ , a disturbance to the individual 
household’s indirect utility from the purchase of product ݆.  

Two of the terms in Eqn (1) represent the gains and losses to household ݅ when 
purchasing and consuming an additional unit of product  ݆. The gain in utility occurs when the 
household consumes the product and is captured by the term 

 ௝ܺሺߚ ൅ Π௫ܦ௜ሻ  

௝ܺ is defined as a vector of length ݔ of the properties of product ݆ , with ܺ଴ ൌ 0 for the outside 
good. ሺߚ ൅ Π௫ܦ௜ሻ is an ݔ-vector of random coefficients where ܦ௜ is defined as a random vector 
of length ݀ of the demographic characteristics of household ݅. ܦ௜ includes both observable and 
unobservable characteristics.4 ܦ௜ is mean-centered over the population allowing us to interpret ߚ 
as an ݔ-vector of mean responses of indirect utility to changes in the properties of the products. 
Although ܦ௜ has a zero-mean across all time periods (or markets), it can have a non-zero mean, 
designated ܦഥ, in any single time period (or market). Finally, Π௫ is an ݔ-by-݀ matrix of 
coefficients.  

A loss in utility arises because the act of purchasing a good requires expenditures equal to 
each product’s price. This loss is captured by the term 

൫ ௜ܻ ൅ ௜ܥ െ ௝ܲ൯൫ߙ ൅ Π௬ܦ௜൯  

௜ܻ is household income, and ܥ௜ is the accumulated consumer surplus derived from the 
household’s current level of consumption of the ܬ produts.

 

 ௜ is the monetary valuation of theܥ 5
household’s current purchases minus their cost,  The purchase of an additional unit of product ݆  
reduces ௜ܻ ൅ ௜ by ௝ܲ , the price of product ݆ with ଴ܲܥ ൌ 0 for the outside good. The monetary loss 
is converted to a utility loss when it is multiplied by the household’s marginal utility of income, 
ሺߙ ൅  Π௬ܦ௜ሻ. This is a scalar random coefficient that combines a mean response to income 
changes, ߙ, with a component that depends on the ݀-vector, ܦ௜ , of demographic characteristics. 
Π௬ is a 1-by-݀ vector of coefficients.   

 Finally, the term ௝ܼߛ௝ represents exogenous effects that may either increase or decrease 
indirect utility but do not operate through changes in either the properties of the products or the 

                                            
4 This differs somewhat from the BLP/Nevo model which treats observable and unobservable 
demographics characteristics separately. 
5 The BLP/Nevo model omits consumer surplus because their model is a discrete-choice model 
describing the indirect utility from the purchase and consumption of a single unit of each of the products. 
There is no accumulation of consumer surplus from the purchase and consumption of prior units.  
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demographic characteristics of the household.6 ௝ܼ is a vector of exogenous effects in the market 
for product ݆, with ܼ଴ ൌ 0 for the outside good. ߛ௝ is the associated vector of non-random 
coefficients.  

The assumptions ଴ܲ ൌ 0, ܺ଴ ൌ 0, and ܼ଴ ൌ 0 make it unnecessary to separately define an 
equation for the indirect utility of the outside good as is done by BLP/Nevo. 

3. The Demographics Transformation 

Eqn (1) differs only in non-essential ways from the indirect utility equation found in 
BLP/Nevo. As written, it presents all of the same estimation problems and would engage the 
same tedious estimation methodology. The fundamental source of difficulties is that the vector of 
demographics variables, ܦ௜ , is not a vector of i.i.d. random variables. We alter this property of 
the model by transforming ܦ௜ using principal components and substituting the components into 
Eqn (1).  

 To implement this, a suitable estimate of the population variance-covariance matrix of 
the demographics variables m  is defined as ust be available. This covariance matrix

Ω ൌ  covሺܦ௜ሻ ൌ Eሾሺܦ௜ െ ௜ܦഥሻᇱሺ ܦ െ   ഥሻሿܦ

Ω is a real, symmetric, positive definite matrix with positive real roots and real characteristic 
vectors. The roots and characteristic vector  are defined by the characteristic equation s of Ω

ᇱΩܣ  ܣ ൌ   ܫݎ

 is a ݀-by-݀ matrix whose columns are the characteristic vectors of Ω . The characteristic ܣ
vectors are orthogonal and normalized so that ܣᇱܣ ൌ  is the ݀-vector of the corresponding ݎ .ܫ
characteristic roots.  

We make the following subst t n (itu io s into Eqn 1) 

௜ܦ ൌ ܣሺܫݎሻଵ/ଶሺܨത ൅   ௜ሻߥ
  

an
 

ܨ

d 
 

 ത ൌ ሺܫݎሻିଵ/ଶܣᇱ ഥܦ   

ሺܨത ൅  ௜ . It contains twoܦ ௜ሻ is the ݀-vector of principal components of the demographics vectorߥ 
terms: a mean vector, ܨത, and a rand mo  vector 

௜ߥ ൌ ሺܫݎሻିଵ/ଶ ܣᇱሺܦ௜ െ   ഥሻܦ

The elements of ߥ௜ are disturbances that are i.i.d. standardized random variables.7 When 
substituting for ܦ௜ in Eqn (1), we also transform the coefficient matrices Π௫ and Π௬ as follows: 

                                            
6 BLP and Nevo do not specifically include terms such as ௝ܼߛ௝ in their discrete-choice model, but other 
researchers using their model have included them. 
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 Γ௫ ൌ Π௫ܣ ሺܫݎሻଵ/ଶ   
  

and 
 

Γ௬ ൌ Π௬

 

  ሻଵ/ଶܫݎሺܣ 

W r s ith these substitutions, the transfo med Eqn (1) become

௜ܷ௝ ൌ ௝ߦ  ൅ ൫ ௜ܻ ൅ ௜ܥ െ  ௝ܲ൯ ቀߙ ൅ Γ௬ሺܨ ത ൅ ௜ሻቁߥ ൅ ௝ܺ൫ߚ ൅ Γ௫ሺܨത ൅ ௜ሻ൯ߥ ൅  ௝ܼߛ௝ ൅ ௜௝ (2)ߝ 

Eqn (2) does not differ from Eqn (1) as a description of the indirect utility derived from the 
purchase and consumption by household ݅ of the product j. The demographics information 
contained in the principal components vector, ሺܨത ൅ ߥ௜ሻ, is identical to the information contained 
in the demographics vector, ܦ௜ . The two equations differ from one another only by a linear 
transformation of variables and coefficients. However, Eqn (2) lends itself to a simple 
representation of its random elements.  

 The formulas for retrieving the structural coefficient matrices Π௫ and Π௬ from estimates 
of the coefficients of Eqn(2) are 

 Π௫ ൌ Γ௫ሺܫݎሻିଵ/ଶܣᇱ  
  

and 
 

Π௬ ൌ Γ௬ሺܫݎሻିଵ/ଶ

 

  ᇱܣ 

We note that Π௫ and Π௬ remain identified even if Eqn (2) is fit using less than the full subset of 
principal components. For example, ሺܨത ൅  ௜ሻ might be truncated to include only the principalߥ 
components corresponding to the largest characteristic roots. The formulas remain workable 
even when zeros replace the missing columns of Γ௫ and  Γ௬. Therefore, the collection of 
demographic variables in ܦ௜ can be enlarged without necessarily increasing the dimensions of 
the estimation problem.  

To ease the technical descriptions of the following sections, we simplify Eqn(2) by 
collecting terms: 

 
௜ܹ ൌ ሺ ௜ܻ ൅ ௜ሻܥ ቀߙ ൅ Γ௬ሺܨത ൅   ௜ሻቁߥ

  
and 

 

 

                                                                                                                                             
7 Proof: 

௜ሿߥሾܧ ሺ ᇱ ഥሿܦ ൌ            
covሺߥ௜ሻ ൌ ௜ߥ௜ߥሾܧ 

ᇱሿ  െ ܦഥሻᇱሿ ܣ ሺܫݎሻିଵ/ଶ 
ൌ ܣ ሻିଵ/ଶܫݎ ௜ܦሾܧ െ  0 

ିଵ/ଶ െ ഥܦ
  
ൌ ሺܫݎሻ ௜ܦሾሺܧᇱܣ  ሻሺܦ௜
ൌ ሺܫݎሻିଵ/ଶܣᇱΩܣ ሺܫݎሻିଵ/ଶ       
ൌ ሺܫݎሻିଵ/ଶ ܫݎ ሺܫݎሻିଵ/ଶ ൌ    ܫ
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 ௝ܴ ൌ ௝ߦ  െ  ௝ܲ൫ߙ ൅ Γ௬ܨത൯ ൅ ௝ܺሺߚ ൅ Γ௫ܨതሻ ൅ ௝ܼߛ௝  

The variable ௜ܹ collects the terms that are common to the indirect utility of every product for a 
single household including the outside good. Because these terms do not contribute to the 
household’s preferences for one product over another, they will eventually drop out of the model 
as it is developed. The variable ௝ܴ is the mean indirect utility of product ݆ for all households. It 
includes the product-level disturbance, ߦ௝, but does not contain any terms that are variable at the 
household level. Eqn (2) be omc es 

௜ܷ௝ ൌ ௜ܹ ൅ ௝ܴ ൅ ൫െ ௝ܲΓ௬ ൅ ௝ܺΓ௫൯ߥ௜ ൅   ௜௝ (3)ߝ

௝ܴ is not directly observed but is calculated indirectly from the aggregate market shares of the 
products. It is this calculation, also done by BLP and Nevo, that our transformation of the 
indirect utility using principal components greatly simplifies. The remaining terms in Eqn (3) are 
linear combinations of the disturbances ߥ௜ and ߝ௜௝ . They and their coefficients are entirely 
responsible for the different preferences exhibited by different households in their purchases.  

4. The Shares Model 

We assume that the elements of the vector ߥ௜ and the disturbance ߝ௜௝ are each i.i.d. 
N(0,1). In contrast, BLP/Nevo assume that ߝ௜௝ is i.i.d. with an extreme value (Logit) distribution. 
Under their assumption only ߝ௜௝ can be eliminated by integration. Their method for calculating 
mean incremental utilities from market share data is to simulate Eqn (1) by taking random 
drawings of the demographics variables. An important advantage of our Normal distribution 
assumption is that it makes it possible to derive the aggregate market shares implied by Eqn (3) 
by performing a simple single-variable numerical integration over a predetermined range. A less 
important consequence of this assumption is to establish the standard deviation of the 
disturbance ߝ௜௝ as the unit of measurement for indirect utility. This unit of measurement is the 
same for all households and all products.  

Given our normal assumption, the error term in Eqn (3), ൫െ ௝ܲΓ௬ ൅ ௝ܺΓ௫൯ߥ௜ ൅  ௜௝ , formsߝ 
a linear combination of variables that are i.i.d. N(0,1). Because a linear combination of Normally 
distributed variables is also Normal, the expression ൫– ௝ܲΓ௬ ൅  ௝ܺΓ௫൯ߥ௜ ൅ ௝ߣ,௜௝ is i.i.d N(0ߝ 

ଶሻ.  The 
standard deviation of ൫– ௝ܲΓ௬ ൅ ௝ܺΓ௫൯ߥ௜ ൅  :௜௝ isߝ 

 
௝ߣ ൌ  ൅ට൫െ ௝ܲΓ௬ ൅ ௝ܺΓ௫൯൫െ ௝ܲΓ௬ ൅ ௝ܺΓ௫൯ᇱ ൅ 1 

 

We may now rewrite Eqn(3) using a single i.i.d. N(0,1) disturbance ݁௜௝ and the standard 
deviation ߣ௝.  With this notational simplification, Eqn (3) becomes 

 ௜ܷ௝ ൌ ௜ܹ ൅ ௝ܴ ൅   ௝݁௜௝ (4)ߣ
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We note that the formula for ߣ௝ depends solely on the coefficients of the elements of ߥ௜ and the 
implicit coefficient of 1 for the disturbance term, ߝ௜௝ . These coefficients do not relate 
specifically to household i. The standard deviation, ߣ௝, is the positive square root of the variance 
so ߣ௝ ൒   .݆ ׊ 1

 The disturbances  ݁௜௝ are bound to have distributions that approach standardized Normal 
distributions as a result of the arithmetic of the model even if the distribution of the elements of 
the demographics vector  ܦ௜ is not multi-variate Normal.  The arithmetic will tend to produce 
this result because the Normal distribution is the limit distribution for linear combinations of 
i.i.d. random variables from any distribution. The are linear combinations of the elements of  
ሺܦ௜ െ ሻതܦ

iv
തതത as a result of the demographics transformation; the disturbances   are themselves 

linear combinations of the elements of ߥ௜ and the disturbance ߝ௜௝.  This linear arithmetic will 
leave the disturbances ݁௜௝ with distributions that are approximately Normal except, possibly, for 
models that use only a very few demographics variables with distinctly non-Normal 
distributions. 

ije

 The mechanics of preference under discrete-choice are straightforward: product ݇ is 
preferred to product ݆ if and only if ௜ܷ௞ െ  ௜ܷ௝ ൒ 0 .8 Then, based on Eqn (4), we form the 
following: 

 ௜ܷ௞ െ ௜ܷ௝

௝ ൌߣ
ܴ௞ െ ௝ܴ ൅ ௞݁௜௞ߣ

௝ߣ
െ ݁௜௝ 

 

The term ௜ܹ drops out because it appears identically in the indirect utility for every product, so 
the preferences of household ݅ are unaffected by the terms collected in ௜ܹ . Moreover, a 
household’s preferences are unaffected by a fixed change that affects all mean indirect utilities 
equally because the choice depends only on the difference ൫ܴ௞ െ  ௝ܴ൯. Therefore, we may 
arbitrarily assign a value to the mean indirect utility of one of the products without loss of 
generality. Here, the natural choice is ܴ଴ ൌ 0 . 

For any given value of the disturbance, ݁௜௝ , we may find the conditional probability that 
product ݇ is preferred to product ݆ by evaluating the cumulative distribution function (c.d.f.) of 
the standard normal distribution, ܨሺݖሻ , at ݖ ൌ ൫ܴ௞ െ ௝ܴ ൅ ௝  . If ݁௜௝ߣ/௞݁௜௞൯ߣ ൑ then ൫ ݖ ௜ܷ௞ െ
൒0 and product ݇ is preferred to product  ݆ .  Form݇ߣ/݆ܷ݅  e ally, we hav

Pr ቆ ௜ܷ௞ െ ௜ܷ௝

௝ߣ

 
൒ 0 | ݁௜௞ቇ ൌ ܨ ቆ

ܴ௞ െ ௝ܴ ൅ ௞݁௜௞ߣ

௝ߣ
ቇ 

 

We then form the conditional probability that product ݇ is preferred to all other products by 
multiplying together the individual conditional probabilities for all products except product k: 

                                            
8 Ties are ignored. 
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Pr ቆ ௜ܷ௞ െ ௜ܷ௝

௝ߣ
൒ ׊ 0 ݆ ് ݇ | ݁௜௞ቇ ൌ ෑ ܨ ቆ

ܴ௞ െ ௝ܴ ൅ ௞݁௜௞ߣ

௝ߣ
ቇ

௝ஷ௞

  
 

Finally, the market share, ܵ௞ሺڄሻ , of product ݇ is equal to the expected value of the probability 
that product ݇ is preferre  e d  d to all of th  other pro ucts:

ܵ௞ሺڄሻ ൌ  න ෑ ܨ ቆ
ܴ௞ െ ௝ܴ ൅ ௞݁௜௞ߣ

௝ߣ

 
ቇ

௝ஷ௞

ஶ

ିஶ
 ሺ݁௜௞ሻ (5)ܨ݀

Eqn (5) is a single-variable integral of a continuous real-valued function ܨሺݖሻ over the 
predetermined range ሾെ∞, ∞ሿ. There is no closed-form mathematical expression for ܨሺݖሻ, the 
Normal c.d.f., nevertheless, the integral in Eqn (5) can be evaluated numerically to any necessary 
degree of accuracy using elementary computational methods such as the trapezoid rule and 
readily available routines for calculating very accurate values of ܨሺݖሻ and ݀ܨሺݖሻ. 

5. Solving the Shares Model 

 Our shares model predicts the market shares of household purchases at the margin. 
However, these shares cannot differ noticeably from the market shares for aggregate purchases in 
a particular time period (or market) when there are a large number of households. A household’s 
purchases of products in any time period are unordered, so any purchase of any product may be 
selected as the “last”, or marginal purchase. Let us select at random a single purchase of each 
household during the time period and designate this selection as the last unit purchased. The 
collection of last purchases for all households will then constitute a random sample with average 
market shares that are closely distributed around means that are the same as the aggregate market 
shares. Therefore, the expected market shares of the marginal purchases of all households are 
virtually identical to the aggregate market shares for all purchases made during the period. 

 Recall that ܴ଴ ൌ 0 . The shares model is solved for any single time period (or market) by 
solving for the vector of mean indirect utilities, ܴ ൌ ൣܴଵ, … , ௃ܴ൧ , that reproduces the vector of 
observed aggregate market shares, ܵכ ൌ ൣ ଵܵ

,כ … , ௃ܵ
 ൧ , when we calculate the vector of marketכ

shares, ܵሺܴሻ ൌ ൣ ଵܵሺܴሻ, … , ௃ܵሺܴሻ൧, by evaluating the integral of Eqn (5) for each named product. 
The elements of the vectors כࡿ and ࡿሺࡾሻ corresponding to the outside good are omitted because 
these shares are determined by the identities: ܵ଴

כ ൌ 1 െ ∑ ܵ௞
௃כ

௞ୀଵ  and ܵ଴ሺܴሻ ൌ 1 െ ∑ ܵ௞ሺܴሻ௃
௞ୀଵ  .  

 We solve the shares model numerically using an algorithm that employs the matrix of 
partial derivatives of the market shares, ࡿሺࡾሻ, with respect to the elements of the vector of mean 
indirect utilities, ࡾ . The elements of this matrix are found by evaluating the integrals formed by 
differentiating Eqn (5) with respect to the elements of ࡾ within the integral. This differentiation 
results in  

 ߲ܵ௞ሺڄሻ
߲ܴ௟

ൌ  න ෑ െ
1
௟ߣ

ܨ ቆ
ܴ௞ െ ௝ܴ ൅ ௞݁௜௞ߣ

௝ߣ
ቇ

௝ஷ௞

ஶ

ିஶ
ܨ݀ ൬

ܴ௞ െ ܴ௟ ൅ ௞݁௜௞ߣ

௟ߣ
൰  ሺ݁௜௞ሻܨ݀

(6)  
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As before, Eqn (6) is a single-variable integration of a continuous real-valued function over the 
range ሾെ∞, ∞ሿ. The matrix of partial derivatives may be evaluated with the same numerical 
integration method that is used to evaluate Eqn (5). 

 The ܬ-by-ܬ matrix of partial derivatives is symmetric and non-singular for ܵሺܴሻ ൐ 0. We 

denote this matrix and its inverse as ቂడௌሺோሻ
డோ

ቃ and ቂడௌሺோሻ
డோ

ቃ
ିଵ

 respectively. To initiate the algorithm, 
we need a vector ࡾ૙ that will yield shares ܵሺܴ଴ሻ ൐ 0 when Eqn (5) is evaluated for each of the 
named products. While the choice ܴ଴ ൌ 0 always works, this is a starting point from which the 
algorithm typically takes many iterations to reach a solution. Our estimation method for the 
coefficient vectors Γ௫ and Γ௬ requires solutions to the shares model for a convergent sequence of 
values. The number of iterations needed to reach these solutions can be considerably reduced by 
using a previously-computed mean vector ܴ as a starting point.  

At iteration ݊ the algorithm calculates a new mean vector, ܴ௡ାଵ , from the previous mean 
vector ܴ௡. Before we can make this calculation, we must numerically integrate Eqn (5) to 
compute the elements of ܵሺܴ௡ሻ. Moreover, we must numerically integrate Eqn (6) to compute 

the elements of ቂడௌሺோ೙ሻ
డோ

ቃ and invert the matrix to obtain ቂడௌሺோ೙ሻ
ோడ

ቃ
ିଵ

 .  ܴ௡ାଵ is computed from 

 
ܴ௡ାଵ ൌ ܴ௡ ൅ ߤ ቈ

߲ܵሺܴ௡ሻ
߲ܴ ቉

ିଵ

൫ܵכ െ ܵሺܴ௡ሻ൯ 
 

The scalar parameter, ߤ, is chosen in the range ሾ0,1ሿ. Values of ߤ close to zero increase the 
dynamic stability of the algorithm but slow its rate of convergence. Values too close to one can 
result in unstable oscillations in the calculated shares when ܴ௡ is not close to ࡾ૙. The iterations 
are repeated until the calculated shares approximate the observed market shares, The termination 
rule that we have used in our applications is: 

 

ඩ෍
ቀܵ௞

כ െ ܵ௞ሺܴሻቁ
ଶ

ܬ ൅ 1

௃

௞ୀ଴

൏ ߬ 

 

where ߬ is a preset tolerance level. The left-hand side of this termination rule is the average 
distance of the calculated market shares from the observed market shares.  

Our computational experience with the algorithm is limited at this time to our postal 
applications. This experience indicates that the algorithm can be made both robust and efficient 
by varying ߤ to converge on 1 as the average distance in the termination rule shrinks. We set 
ߤ ൌ 0.3 when the average distance is large and allow ߤ to converge on 1 as average distance 
approaches τ. When ܴ଴ ൌ 0 is used as the starting point, the algorithm typically requires only 8 
to 10 iterations to solve the shares model. In the latter stages of our estimation methodology, the 
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shares model is usually solved to an accuracy of ߬ ൌ 1݁ି଺ in just two iterations using a previous 
solution as the starting point.9 

6. The Demand Elasticities 

 The BLP model was originally conceived to strike a delicate balance between traditional 
demand models, such as a set of translog demand equations, and models that fit logit equations to 
market shares data. Econometric fits of traditional demand models encounter difficulties because 
of the large number of highly correlated price terms in the equations. This difficulty can be 
overcome by fitting a straight-forward logit model to market shares; however, the estimated price 
and cross-price elasticities derived from a logit model are so severely restricted that they fail to 
represent an acceptable range of demand behavior (see BLP 1995 or Nevo 2000a). The BLP 
model is an effective compromise because the demand elasticities derived from the fitted model 
are capable of representing any demand behavior, yet they are sufficiently restricted so that the 
estimates usually conform well to a priori expectations of signs and magnitudes. 

 Demand elasticities derived from our variant of the BLP model are also a successful 
compromise. This is demonstrated, following BLP and Nevo, by exhibiting the formulas for the 
elasticities and observing that there is nothing about them that prevents the demand elasticities 
from taking any credible values.  

 The general formula for the demand elasticity for product ݇ with respect to the price ௟ܲ of 
product ݈ is 

 ௟ܲ

ܵ௞ሺڄሻ
߲ܵ௞ሺڄሻ

߲ ௟ܲ
ൌ ௟ܲ

ܵ௞ሺڄሻ ቈ
߲ܵ௞ሺڄሻ

߲ܴ௟

߲ܴ௟

߲ ௟ܲ
൅

߲ܵ௞ሺڄሻ
௟ߣ߲

௟ߣ߲

߲ ௟ܲ
቉  

(7)  

Moreover, from Eqn (4) we can derive 

߲ܴ௟

௟

 
߲ܲ ൌ െ൫ߙ ൅ Γ ௬ܨ ത൯ 

and 
௟ߣ߲

߲ ௟ܲ
ൌ

Γ௬ൣ ௟ܲΓ௬
ᇱ െ ௟ܺΓ௬

ᇱ ൧
௟ߣ

 

 

The general formula for the demand elasticity for product ݇ with respect to the element ݄ 
of the vector of propertie of ݈,  , is product  ௟ܺ s 

௟ܲ

ܵ௞ሺڄሻ
 ߲ܵ௞ሺڄሻ

߲ ௟ܺ
௛ ൌ ௟ܲ

ܵ௞ሺڄሻ ቈ
߲ܵ௞ሺڄሻ

߲ܴ௟

߲ܴ௟

߲ ௟ܺ
௛ ൅

߲ܵ௞ሺڄሻ
௟ߣ߲

௟ߣ߲

߲ ௟ܺ
௛቉  

(8)  

                                            
9 BLP and Nevo also use an algorithm to solve a shares model that is similar to ours. However, their 
algorithm uses a simulation to estimate product shares while we perform a numerical integration. The 
BLP/Nevo algorithm does not rely on an estimate of the matrix of partial derivatives, ቂడௌሺோሻ

డோ
ቃ. Instead, their 

algorithm exploits a less efficient contraction mapping of ܴ௡ into ܴ௡ାଵ discovered by BLP. Consequently, 
their algorithm can take hundreds of iterations to solve their shares model while ours typically requires 
fewer than ten. BLP/Nevo also use a different termination rule. 



11 
 

Again, from Eqn (4) we can derive the f owoll ing 

߲ܴ௟

߲
 

௟ܺ
௛ ൌ ௛ߚ ൅ Γ௫

௛ܨത 

and 
௟ߣ߲

߲ ௟ܲ
ൌ

െΓ௫
௛ൣ ௟ܲΓ௫

ᇱ െ ௟ܺ
௛Γ௫

ᇱ൧
௟ߣ

 

 

Here, we define ߚ௛ and ௟ܺ
௛ to be elements of the vector ߚ and the row of the matrix Γ௫ 

corresponding to ௟ܺ
௛.  

 The right-hand sides of Eqn (7) and Eqn (8) contain two components. The first 
component captures the effect on demand of a change in mean indirect utility, ܴ௟ . This effect is 
identical for all households. The second component reflects the effect of changes in the standard 
deviation of the disturbance from Eqn (4), ߣ௟ . This term captures the effect of the variability in 
household utility on aggregate demand. 

 The demand elasticities are calculated by inserting values for the partial derivatives 
appearing in the right-hand sides of Eqn (7) and Eqn (8). In particular, the partial derivative 
ቂడௌೖሺڄሻ

డோ೗
ቃ is obtained in the numerical evaluation of Eqn (6). Likewise, we can derive the partial 

derivative ቂడௌೖሺڄሻ
డఒ೗

ቃ : 

 ߲ܵ௞ሺڄሻ
௟ߣ߲

ൌ  න ෑ െ
ሺܴ௞ െ ܴ௟ ൅ ௞݁௜௞ሻߣ 

ଶߣ ܨ ቆ
ܴ௞ െ ௝ܴ ൅ ௞݁௜௞ߣ

௝ߣ
ቇ

௝ஷ௞

ஶ

ିஶ
ܨ݀ ൬

ܴ௞ െ ܴ௟ ൅ ௞݁௜௞ߣ 

௟ߣ
൰  ሺ݁௜௞ሻܨ݀

(9)

This partial derivative is also a single-variable integral of a continuous function over the range 
ሾെ∞, ∞ሿ and can be evaluated using the same methods used in calculating the market shares. 

 The product demands also have elasticities with respect to the elements of the mean 
demographic vector, ܦഥ . The general formula for the elasticity of demand for product ݇ with 
respect to the element ݉ of the mean vector of demographic ch cteristics, ܦഥ is ara

ഥ௠ ܦ

ܵ௞ሺڄሻ
߲ܵ௞ሺڄሻ
ഥ௠ܦ߲ ൌ

ഥ௠ܦ

ܵ௞ሺڄሻ ቎෍
߲ܵ௞ሺڄሻ

߲ܴ௟

௃

௟ୀଵ

߲ܴ௟

 ഥ௠቏ܦ߲
(10)

where10 

 ߲ܴ௟

ഥ௠ܦ߲ ൌ ሾെ ௟ܲΓ௫ ൅ ௟ܺΓ௫ሿሺܫݎሻିଵ/ଶܣᇱ 
 

                                            
ti g for ܨത in the equation for mean uti d 

ܴ௟ ൅

10 This can be seen by substitu n collecting terms on ܦഥ: lity an

ൌ ௝ߦ  െ ௟ܲߙ ൅ ௟ܺߚ ൅ ሾെܲΓ௫ ௟ܺΓ௫ሿሺܫݎሻିଵ
ଶܣ

ൌ ௝ߦ  െ ௟ܲߙ ൅ ௟ܺߚ ൅ ሾെ ௟ܲΠ௫ ൅ ௟ܺΠ௫ሿܦഥ        
ᇱܦഥ 
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Unlike Eqn (7) and Eqn (8), Eqn (10) shows that the demographic changes only affect demand 
by changing the mean indirect utility of the named products, ܴ௟ .  

 Finally, we note that Eqns(7-10) all employ information that is specific to a time period 
or market. Therefore, the elasticities all depend upon values of the demographic variables, 
product characteristics, and external effects used to compute them from the formulas.  

7. The Estimation Method 

 Our method of estimation follows BLP/Nevo, however our description here tracks our 
application of the method to postal services in Cigno et al (2012). We omit the use of 
instrumental variables and assume that the mean disturbances, ߦ௝, are i.i.d. in order to simplify 
the presentation. The GMM estimator described by BLP and Nevo reduces to a two part 
application of ordinary and non-linear least squares. 

The coefficients that express the demand behavior of the households are the same in 
every period (or market), for every household, and for every product. This allows the model to 
be fit as a single all-encompassing equation for the mean incremental utility of the named 
products: 

 ௝ܴ ൌ ௝ߦ  െ ௝ܲ൫ߙ ൅ Γ ௬ܨ ത൯ ൅ ௝ܺሺߚ ൅ Γ௫ܨതሻ ൅ ௝ܼߛ௝ ׊ ݆ ൌ 1, … , (11) ܬ

The outside good is omitted because ܴ଴ ൌ 0 in every period. The only disturbance present in 
Eqn (11) is the mean disturbance, ߦ௝ . The disturbance is assumed to be i.i.d. across all periods 
and named products. This assumption can be made tenable for products with widely differing 
prices, such as postal services, by scaling units so that a single purchase of any product entails a 
roughly equivalent average expenditure.11  

 At first glance, Eqn (11) appears to satisfy the requirements for estimation by ordinary 
least squares. The equation is linear in its parameters; the disturbance term is additive and 
spherical; and, for many applications, the exogenous variables appearing on the right-hand side 
of Eqn (11) are predetermined and measured with negligible error.12 In fact, the only 
complication that prevents us from fitting the equation with elementary methods is that the 
dependent variable, ௝ܴ, cannot be independently measured. Instead, it is calculated, as we have 
described, by solving a shares model that conspicuously depends upon the estimates of the 
coefficients Γ௫ and Γ௬ . 

 Our method of estimation, in brief, is to minimize the sample variance of the mean 
disturbance, ߦ௝ . Following Nevo, we redefine the coefficient vectors and observation matrices to 
describe the estimation methodology. The coefficients are assembled into two column vectors: 

                                            
11 Alternatively, the variance-covariance matrix of the disturbances can be estimated from a preliminary fit 
of the model as we describe here. Our methodology can then easily be extended using Generalized Least 
Squares. This extension should improve the efficiency of the estimation method.  
12 The latter condition is generally assumed to apply to U.S. postal rates. Between 1970 and 2006 the 
nominal rates were predetermined by a regulatory process; since 2006, they have been linked to the 
Consumer Price Index under a formula stipulated by Congress. All econometric demand studies of U.S. 
postal volumes to date have treated the postal rates as exogenous. 
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Θଵ ൌ

ۏ
ێ
ێ
ێ
ۍ

ߙ
ߚ
ଵߛ
ڭ

௃ߛ ے
ۑ
ۑ
ۑ
ې
  and Θଶ ൌ

ۏ
ێ
ێ
ێ
ۍ
Γ௬ଵ
Γ௫ଵ

ڭ
Γ௬ௗ
Γ௫ௗے

ۑ
ۑ
ۑ
ې

 

 

where the ݀ columns of Γ௫ and Γ௬ are stacked to create the vector Θଶ. This arrangement 
segregates the model’s coefficients into a subset, Θଵ, that only occurs in Eqn (9) and a subset, 
Θଶ, that is also needed to solve the shares model. The observation matrices, ଵܺ and ܺଶ , are 
defined with each row holding observed values of the exogenous variables conforming to Θଵ and 
Θଶ . A single row of ଵܺ is the vector 

 ଵܺ ൌ ൣെ ௝ܲ, ௝ܺ , , … , ௝ܼ, … , 0൧ 0

for a single period/product pair. A single row of ܺଶ holds cross-products formed by multiplying 
together the elements of ܨത and either the negative of the price ௝ܲ or an element of the vector ௝ܺ . 
In particular, for any single per d r

 

io /product pai  we have 

 ܺଶ ൌ ൣെ ௝ܲܨଵഥ , ௝ܺܨଵഥ , … , െ ௝ܲܨௗതതത, ௝ܺܨௗതതത൧  

The observation vector for ௝ܴ is denoted ܴሺΘଶሻ to indicate its dependence on the coefficients in 
Θଶ . The vector of disturbances for the sample is ߦ௝ . With these definitions, the model and the 
sample are simply described by the matrix equation 

ܴሺΘଶሻ ൌ ߦ ൅ ଵܺΘଵ ൅ ܺଶΘଶ (12)

 Our model is fit by finding estimates of Θ෡ଵ and Θ෡ଶ that minimize the sum of the squared 
residual disturbances: 

ߦᇱߦ ൌ ሾܴሺΘଶሻ െ ଵܺΘଵ െ ܺଶΘଶሿᇱሾܴሺΘଶሻ െ ଵܺΘଵ െ ܺଶΘଶሿ  

This problem can be reduced to a minimization over just the vector Θଶ by making the following 
substitution: 

 Θ෡ଵ ൌ ሺ ଵܺ
ᇱ

ଵܺ
ଵሻି

ଵܺ
ᇱሾܴሺΘଶሻ െ ܺଶΘଶሿ  

This is simply the least-squares est 12) in the form  imate of Θଵ for a fit of Eqn (

ܴሺΘଶሻ ൅ ܺଶΘଶ ൌ ߦ ൅ ଵܺΘଵ 

Substituting back into Eqn ( r n12) and rea rangi g, we get  

ߦ ൌ ሾܫ െ ଵܺሺ ଵܺ
ᇱ

ଵܺሻିଵ
ଵܺ
ᇱሿሾܴሺΘଶሻ െ ܺଶΘଶሿ  

from which 

ߦᇱߦ ൌ  ሾܴሺΘଶሻ െ ܺଶΘଶሿᇱሾܫ െ ଵܺሺ ଵܺ
ᇱ

ଵܺሻିଵ
ଵܺ
ᇱሿᇱሾܫ െ ଵܺሺ ଵܺ

ᇱ
ଵܺሻିଵ

ଵܺ
ᇱሿሾܴሺΘଶሻ െ ܺଶΘଶሿ  
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Because the matri ܺ ܺ  is id er reduces to   x ሾܫ െ ଵܺሺ ଵܺ
ᇱ

ଵሻିଵ
ଵ
ᇱሿ empotent, the sum of squares furth

ߦᇱߦ ൌ  ሾܴሺΘଶሻ െ ܺଶΘଶሿᇱሾܫ െ ଵܺሺ ଵܺ
ᇱ

ଵܺሻିଵ
ଵܺ
ᇱሿሾܴሺΘଶሻ െ ܺଶΘଶሿ (13)

Eqn (13) is a function of only the one vector, Θଶ . In addition, we can calculate the sum 
of squares using Θ෡ଵ with  c g a ܺ ଵ ଵ

ିଵ
ଵܺ
ᇱሿ because  out actually omputin  the m trix ሾܫ െ ଵሺܺᇱܺ ሻ

ߦᇱߦ ൌ ሾܴሺΘଶሻ െ ܺଶΘଶሿԢൣܴሺΘଶሻ െ ଵܺΘ෡ଵ െ ܺଶΘ ൧

Eqn (13) is real-valued, continuous, and strictly convex so long as ܴሺΘଶሻ െ ܺଶΘଶ is not fixed 
with respect to any element of Θଶ . Therefore, for any case of interest, we locate its minimum at 
the point where its gradient vanishes, i.e., where ׏ሺߦᇱߦሻ ൌ 0 . 

ଶ   

There exist a number of numerical methods for solving the vector equation ׏ሺߦᇱߦሻ ൌ 0 . 
One of the more effective is the Newton-Raphson algorithm.13 We begin iteration ݊ with an 
estimate, Θଶ

௡ , for which we have calculated the gradient ׏௡. The method also requires an 
estimate of the matrix of second-order partial derivatives of Eqn (13). This is the Jacobian matrix 
of ׏ሺߦᇱߦሻ evaluated for Θଶ

௡. The Jacobian matrix is denoted ׏ܬ
௡. It is non-singular with inverse 

ሾ ׏ܬ
௡ ሿିଵ. The Newton-Raphson method employs a linear approximation to ׏ሺߦᇱߦሻ in the region of 

Θଶ
௡: 

ߦሺ׏  ׏
௡ሾΘଶ െ Θଶ

௡ሿ ᇱߦሻ ൎ ௡׏ ൅ ܬ

The basic idea of the method is to set ׏ሺߦᇱߦሻ ൌ 0  and solve the linear approximation for a new 
vector, 

 

 Θ

Then repeat the process until ׏௡ൎ 0 . The algorithm requires a starting vector, Θଶ
଴ and a 

termination rule for judging when ׏ൎ 0 . For our applications to postal products we have used 
Θଶ

଴ ൌ 0 and have terminated when every element of ׏௡ is absolutely less than 0.005.  

ଶ
௡ାଵ ൌ Θଶ

௡ െ ሾ ׏ܬ
௡ሿିଵ׏௡  

Differen E e t tiating qn (13) yiߦ lds he formula for the gradient of ᇱߦ: 

ሻߦᇱߦሺ׏ ൌ 2ሾܴ׏ሺΘଶሻ െ ܺଶሿԢ ሾܫ െ ଵܺሺ ଵܺ
ᇱ

ଵܺሻିଵ
ଵܺ
ᇱሿሾܴሺΘଶሻ െ ܺଶΘଶሿ  

which can also be calc aulated s 

ሻߦᇱߦሺ׏ ൌ 2 ሺ ଶሻ െ ሾܴ׏ Θ ܺଶሿԢ ൣܴሺΘଶሻ െ ଵܺΘ෡ଵ െ ܺଶΘଶ൧  

where ܴ׏ሺΘଶሻ is the gradient of ܴሺΘଶሻ. The formula for the approximation to the Jacobian 
matrix is obtained by differentiating again with ܴ׏ሺΘଶሻ treated as fixed 

                                            
13 Although the Newton-Raphson method is effective, it is problematic for the BLP/Nevo model because it 
requires accurate estimates at each iteration of the gradient ׏௡ and the Jacobian matrix ׏ܬ

௡ . The 
simulation used to solve the shares model in the BLP/Nevo methodology is a slow and inaccurate way to 
estimate ׏௡ and ׏ܬ

௡ . With our revisions, the calculation of ׏௡ and an approximation to ׏ܬ
௡ are made easier 

and much more accurate. 
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׏ܬ  ൎ 2ሾܴ׏ሺΘଶሻ െ ܺଶሿᇱሾܴ׏ሺΘ െଶሻ ܺଶ

 The gradient vector ܴ׏ሺΘଶሻ includes a sub-vector ܴ׏௧ሺΘଶሻ holding elements 
corresponding to the named products for each time period (or market). By the Implicit Function 
Theorem: 

ሿ  

 
௧ሺΘଶሻܴ׏ ൎ ൤

߲ܴ௧

௧ߣ߲
൨ ൤

௧ߣ߲

߲Θଶ
൨ ൌ ቈ

߲ܵ௧ሺܴ௧ሻ
߲ܴ௧

቉
ିଵ

ቈ
߲ܵ௧ሺܴ௧ሻ

௧ߣ߲
቉ ൤

௧ߣ߲

߲Θଶ
൨ 

 

The matrix  ቂడௌ೟ሺோ೟ሻ
డோ೟

ቃ is the same as the matrix that is calculated by numerically integrating Eqn 

(6) and then inverting to solve the shares model for period ݐ. The elements of the matrix ቂడௌ೟ሺோ೟ሻ
డఒ೟

ቃ 

are computed by numerically integrating Eqn (9). The elements of ቂడఒ೟
డ஀మ

ቃ are obtained by 
differentiating ߣ௧ for the period ݐ from Eqn(4). The vectors of the derivatives with respect to the 
elements of Γ௫ and Γ௬ are  

 ൤డఒ೗
డ୻೤

൨ ൌ ൫ି௉೗
మ୻೤

ᇲ ା௉೗୻ೣ
ᇲ ௑೗

ᇲ൯
ఒ೗

 and ቂడఒ೗

ೣడ୻
ቃ ൌ ௉೗୻೤௑೗

ᇲି௑೗୻ೣ
ᇲ ௑೗

ᇲ

ఒ೗
   

It should be noted that reversing the signs of  Γ௫ and Γ௬ leaves the same standard deviation ߣ௟ . 
Therefore, the signs of the vectors of the derivatives of ߣ௟ should be verified experimentally. 

 Estimates of the asymptotic variance-covariance matrices of Θ෡ଵ and Θ෡ଶ can be retrieved 
from the last iteration of the Newton-Raphson method. Let ߪොଶ ൌ క෠ ᇲక෠

ே
 be an estimate of the 

variance of ߦ௝. In our applications, we have used ܰ ൌ ܶ ൈ  minus the combined number of ܬ
coefficients in the vectors Θଵ and Θଶ minus the number of omitted observations. This replicates 
the least-squares formula for an unbiased estimate of ߪଶ . 

At termination, Θ෡ଵ is a result of a least-squares regression of ܴ൫Θ෡ଶ൯ െ ܺଶΘ෡ଶ on ଵܺ. The 
vector of residuals from this fit is ߦመ. The variance-covariance matrix of Θ෡ଵis  

 
cov൫Θ෡ଵ൯ ൌ ොଶሺߪ ଵܺ

ᇱ
ଵܺሻିଵ. 

 

 

Similarly, Θ෡ଶ is the result of a least-squares fit. The Newton-Raphson equation  
Θଶ

௡ାଵ ൌ  Θଶ
௡ െ ሾ ׏ܬ

௡ሿିଵ׏௡ is the estimator for a least-squares regression of ܴሺΘଶሻ െ ଵܺΘ෡ଵ െ ܺଶΘଶ 
on ܴ׏൫Θ෡ଶ൯ െ ܺଶ to fit the difference vector ሺΘଶ

௡ െ Θଶ
௡ାଵሻ . This vector approaches zero at 

termination so the vector of residuals from this fit also approaches ߦመ. The variance-covariance 
matrix for  ሺΘଶ

௡ െ Θଶ
௡ାଵሻ is the asymptotic variance-covariance matrix of Θ෡ଶ, i.e.,  

 
cov൫Θ෡ଶ൯ ൌ ොଶሾߪ2 ௩ܬ

௡ሿିଵ . 
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8.  Conclusion 

Conventional econometric methods have difficulty fitting demand models incorporating a 
large number of similar products with highly correlated prices.  In order to make the 
econometrics work the equations in such models must be overly-restrictive with respect to the 
prices.  When fit by conventional methods the estimates can seriously miss-represent price 
elasticities as well as other characteristics of demand.  This is precisely what occurs with 
conventional econometric models of demand for postal services.   In our companion paper 
(Cigno et al 2012) we show that the existing models, which mostly omit cross-price terms, 
commonly under-estimate the magnitudes of the own-price elasticities by a factor of two or 
more.   

The Random-Coefficients Discrete-Choice Logit model is an attractive alternative but is 
designed for discrete purchases of large items. The BLP/Nevo methodology for fitting it is also 
computationally quite challenging. Our Random-Coefficients Discrete-Choice Normal model 
retains all of the conceptual advantages of the BLP/Nevo model, extends its scope to multiple 
purchases of small items, simplifies the computations of mean incremental utility and increases 
their accuracy.  Our model can be fit with just a small fraction of the effort typically required by 
the BLP/Nevo methodology.   

The major contribution of our approach is to provide a practical method for estimating 
price elasticities for demand systems involving many similar products such as U.S. postal 
services.  The applications to postal services in our companion paper (Cigno et al 2012) 
demonstrate that our model and estimation method are effective.  
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