USPS-T-9

TECHNICAL APPENDIX C

Description of Logistic Growth Variable

1	Logistic growth is modelled as follows:
2	$\frac{\alpha}{[1 + \beta^* \text{EXP}(-\delta^* \text{T})]} + 10000^*(\alpha - \text{ABS}(\alpha)) + 10000^*(\beta - \text{ABS}(\beta)) + 10000^*(\delta - \text{ABS}(\delta))$
3	where $\alpha,\beta,$ and δ are the parameters to be estimated, EXP is the symbol for
4	exponential, ABS is the symbol for absolute value, and T indicates time. The
5	parameter α represents the maximum adoption level, the parameter β represents
6	the time it takes to reach the maximum adoption level, and the parameter $\boldsymbol{\delta}$ reflects
7	the rate of adoption. The rate of change of the dependent variable with respect to
8	time is proportional to the current level of the dependent variable and also to the
9	distance remaining to reach the maximum adoption level $\alpha.~$ The parameters $\alpha,\beta,$
10	and δ must all be positive. The terms 1000*(α -ABS(α)), 1000*(β -ABS(β)), and
11	1000*(δ -ABS(δ)) are called the penalty functions. These functions vanish when
12	convergence is attained and are used to ensure that the convergence occurs such
13	that the positivity conditions hold.
14	This is a nonlinear expression and needs to be estimated using a nonlinear
15	estimation to sharing a la supetion this is here died in two stands. In the first stand

estimation technique. In practice this is handled in two stages. In the first stage,
using a nonlinear least squares technique, an equation is estimated with a logistic
trend term. From this equation the parameters of the logistic component of the
model are used to construct the market penetration variable called the Z-variable.

TA C-1

The variable is simply the prediction from the equation using only the logisticcomponent.

In the second stage the coefficient of the computed Z-variable is constrained
to equal 1. This is achieved by subtracting the Z-variable from the dependent
variable to obtain a new transformed dependent variable. The estimation then
proceeds as usual but with the new transformed dependent variable. The final
forecasts are retransformed by adding the Z-variable back to the forecasts from the
model.

The statistical calculations are performed as a standard feature in the
 computer software system, "Regression Analysis of Time Series". They are invoked
 by using the "NONLIN" and "NLLS" commands producing the non-linear estimations
 via non-linear least squares as discussed above.