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1.  Introduction
This report is our response to the Postal Service’s recent request that we investigate the possibility that certain parts of the Engineered Standards database can be used to estimate new load-time variabilities.  This request has been motivated by the ongoing goal of producing accurate volume-variable load-time costs, and the desire to implement a key recommendation made by the A. T. Kearney Data Quality Study that the Postal Service more fully integrate existing operational data into product costing analyses.
  Until now, only the work sampling tally data collected by the Delivery Redesign/Engineered Standards Study team in its October 1996 – April 1998 survey of city routes have been used to support rate case cost analyses.  The specific Engineered Standards (ES) data set that was used for this purpose consists of 857 route days of street-activity tallies collected for 336 unique city carrier letter routes located in 76 ZIP codes.  The application of this data set has been limited to the use of tally counts to estimate new percentages of time spent by carriers conducting the activities of loading, street support, route-access on foot and park & loop sections, route-access on curb sections, driving on non-curb sections, and street box collection. 

In response to the Postal Service’s request, we determined that some potentially useful data are available for a subset of the ES data set routes that had provided the tallies used to estimate the new BY 1998 street-time percentages.  These additional data come from both the work sampling and time study portions of the ES database.  In particular, the new data consist of daily records of mail volumes for total cased letters, DPS letters, DAL cards, flats, parcels, and accountables delivered by city carriers on regular letter routes.  In addition, data are also recorded on total possible delivery points located on each route for each of the following eight delivery-type categories: residential other, residential curb, residential central, residential NDCBU, business other, business curb, business central, and business NDCBU.

These new volume and delivery data provide an opportunity to conduct new load-time regression analyses.  To pursue this opportunity, Foster Associates, Inc.  specified and estimated a new load-time model.  The nature of this model is straightforward.  Following the Postal Rate Commission’s current approach, the model defines total load time generated on a route-day as a quadratic function of the corresponding volumes of letters, flats, parcels, and accountables delivered on the route and the route’s total delivery points. Our report presents results for alternative versions of this basic quadratic form.  The report also compares these new regressions with the Postal Rate Commission’s regressions that are used to calculate the volume-variable load-time costs presented in both the Commission’s and the Postal Service’s BY 1998 city carrier worksheets.  

Section 2 summarizes the Postal Rate Commission (PRC) regressions, focusing on key characteristics that are later compared with the new regressions.  Section 3 describes the regression data set that was constructed to estimate the new regressions.  Section 4 presents the new regression results, including the resulting new marginal load times, and the new elasticities of load time with respect to volumes by shape, accountables volume, and delivery points.  Section 4 also compares these new results with comparable results from the official PRC regressions.  Sections 5 and 6 present variations of the new load-time analysis.  These variations recalculate values for certain variables, or they add new variables to the independent variable set, but in all cases they preserve the basic quadratic structure of the load-time equation.  Section 7 concludes with a comparison of the new regression analysis with the PRC regression model, summarizing the favorable and unfavorable operational and statistical properties of each analysis.  

2. The PRC Model

The official PRC load-time model defines daily load time at a single stop as a function of letters, flats, parcels, accountables, collections, delivery points, and dummy variables representing the carrier’s container type and the receptacle type at the stop location.  The equation is quadratic in the volume and deliveries terms.  A separate regression is estimated based on this equation for each of the three stop types: single delivery residential (SDR), multiple delivery residential (MDR), and business and mixed (BAM).  Because each SDR stop, by definition, has only one delivery point, the SDR load-time equation excludes all terms involving delivery points.  SDR load time is thus strictly a function of volumes and the dummy variables.  All three regressions were estimated through the use of data collected in the 1985 Load-Time Variability field study.

Table 1 summarizes the SDR, MDR, and BAM regression results.  It shows that the MDR and BAM equations have high R-squares, but that the SDR equation, which is applied to by far the largest share of accrued load-time costs, has an R-Square of only 35.3%.  All three regressions are also characterized by receptacle and container dummies that explain large percentages of the variations in SDR, MDR, and BAM load times. 

Table 1.  PRC LOAD-TIME REGRESSIONS BASED ON 1985 LTV DATA

(t-statistics are listed in parentheses)


SDR
MDR
BAM

Intercept
11.15 (2.65)
-28.51 (2.16)
-28.44 (2.13)

Receptacle Dummies




Mail Box
-28.61 (17.76)
-47.37 (3.08)


Curbline Box
24.82 (13.13)



Multi-Apartment Boxes
736.75 (21.38)



Desk Drop
-34.15 (3.35)



Mailroom


617.47 (6.29)

NDCBU
284.96(13.04)
-247.65 (6.24)


Rural-Type Box
- 26.74(7.27)
-97.43 (2.98)
-72.30 (1.78)

Handed to Customer
13.75 (2.46)



Container Dummies


Loose Mail
24.10 (5.81)

29.14 (2.23)

Tray
26.52 (4.26)

358.32 (5.43)

Sack or Pouch
40.42 (7.37)



Volume Terms


Letters
6.33 (22.91)
11.67 (8.13)


Flats
14.79 (25.19)
12.33 (5.23)


Parcels
122.5 (19.82)
213.33 (8.52)
91.05 (4.39)

Accountables
479.91 (37.34)
429.59 (8.16)
360.05 (15.56)

Collections
11.83 (13.03)
15.25 (3.01)


Possible Deliveries

40.42 (16.78)
81.19 (18.78)

Letters Squared
0.07 (7.41)
0.39 (10.05)
-0.00 (4.75)

Flats Squared

0.78 (13.62)


Parcels Squared
-18.52 (5.31)

-11.54 (2.74)

Accountables Squared


-16.85 (7.53)

Collections Squared
-0.15 (9.01)

-0.01 (2.52)

Possible Dels Squared

-0.03 (0.62)
-3.19 (12.99)

Letters*Flats
-0.56 (11.20)
-0.37 (4.79)


Letters*Parcels

-4.66 (5.15)


Letters*Accountables
-23.24 (13.21)
-27.09 (5.57)


Letters*Collections
-0.79 (8.38)
-1.77 (4.58)
0.05 (2.30)

Letters*Possible Dels


1.89 (14.44)

Flats*Parcels

-3.95 (2.62)


Flats*Accountables
12.25 (2.14)
-4.88 (0.66)
-5.14 (4.85)

Flats*Collections
0.32 (1.86)
1.59 (3.48)
-0.11 (1.73)

Flats*Possible Dels

-0.61 (6.24)
1.47 (6.01)

Parcels*Accountables
146.18 (8.10)
365.72 (4.81)


Parcels*Collections
-17.76 (7.32)
38.11 (4.16)


Parcels*Possible Dels


-20.44 (4.05)

Accountables*Possible Dels

26.39 (4.90)
13.80 (3.51)

Accountables*Collections
97.05 (13.09)



Collections*Possible Dels

0.19 (0.55)
0.32 (4.57)

R-Square
35.3%
95.8%
81.7%

Number of Observations
16,058
1,414
1,412

Caution must be observed in interpreting the PRC’s econometric results. The apparently high t-statistics are artifacts of the estimation procedure.  The econometric results in Table 1 are the result of “backward elimination stepwise regression.”  Under this procedure, coefficients with low t-values are eliminated until only apparently significant coefficients are left.  The difficulty with this procedure is that it invalidates any calculated statistics (like the t-statistic or the F-statistic) that could be used to test hypothesis like whether or not a coefficient is “significant”:

While stepwise regression can be useful in helping one to look at data when there are a large number of possible explanatory variables to include, it is of little or no value when one is attempting to analyze a model statistically.  The reason is that t and F tests consider the test of a null hypothesis under the assumption that the model is given correctly, i.e., correctly specified.  If we have searched over a large set of variables, selecting those that fit well, we are likely to get significant t tests with great frequency.  As a result, the large t statistics do not allow us to reject the null hypothesis at a given level of significance.

Indeed, the R97-1 Decision also articulates this critique of the stepwise regression technique used to derive the official SDR, MDR, and BAM load-time regressions.  The Decision concludes that “stepwise testing and elimination of … variables according to their individual t-statistics risks discarding variables that are jointly significant, resulting in a biased specification.” 

The Postal Service’s BY 1998 volume-variability analysis substituted average FY 1998 CCS volumes per stop and average actual deliveries per stop for the appropriate variables in these SDR, MDR, and BAM regressions to derive load-time elasticities.  For this purpose, it also substituted average 1985 LTV data set values for the receptacle and container dummies and for collections per stop into the remaining variables in these equations.  Table 2 shows the predicted total load times per stop, marginal load times, and load time elasticities with respect to volumes and deliveries computed at these substituted values.  

Table 2.  TOTAL LOAD TIMES PER STOP,
 MARGINAL LOAD TIMES PER STOP, 
AND LOAD TIME ELASTICITIES

 DERIVED FROM THE PRC LOAD-TIME REGRESSIONS AT AVERAGE FY 1998 AND 1985 INDEPENDENT VARIABLE VALUES 

(Total and Marginal Load Times are in Seconds)


SDR
MDR
BAM

Predicted Total Load Time Per Stop 
   8.63
  5.70
   17.32

Marginal Load Time With Respect to Letters
   0.57
  1.89
     0.22

Elasticity of Load Time With Respect to Letters
26.32%
52.56%
   15.09%

Marginal Load Time With Respect to Flats
   1.27
  1.08
     0.07

Elasticity of Load Time With Respect to Flats
20.43%
  10.48%
    1.53%

Marginal Load Time With Respect to Parcels
11.69
  15.03
    6.31

Elasticity of Load Time With Respect to Parcels
  8.68%
   6.79%
    8.23%

Marginal Load Time With Respect to Accountables
43.80
  23.83
   35.12

Elasticity of Load Time With Respect to Accountables
  4.15%
  1.54%
  24.48%

Marginal Load Time With Respect to Collections
   0.87
   0.71
    0.05

Elasticity of Load Time With Respect to Collections
  2.51%
   0.63%
    0.82%

Marginal Load Time With Respect to Deliveries

   3.77
   10.07

Elasticity of Load Time With Respect to Deliveries

43.09%
  64.68%


The marginal load times and load-time elasticities summarized in table 2 reveal several counterintuitive aspects of the PRC regressions.  Observe first that for MDR and BAM stops, marginal load times with respect to flats are lower than marginal load times with respect to letters.  The more accepted view is that an additional flat should take longer to load than an additional letter.  Furthermore, the estimated marginal letters load time and marginal flats load time at BAM stops are both problematic in an absolute sense, regardless of how they relate to one another.  Both are much lower than comparable marginal load times at SDR and MDR stops.  Specifically, the estimates indicate that whereas an additional letter or flat loaded at an SDR or MDR stop results in one-half second up to almost two seconds of additional load time, the additional letter or flat loaded at the BAM stop results in less than a quarter of a second of additional load time.  Certainly there is no operational basis for such an anomalous discrepancy.

3.  Construction of the New Regression Data Set
The new regression data set obtained from the 1996-1998 ES database contains data by route-day on clocking in and clocking out times, in-office and street-activity time proportions, mail volumes by shape, and total delivery points by type.  Values are recorded for these variables for 971 route-day records.  However, the elimination of records having incomplete data or for which percentages of tallies that are load-time tallies could not be found produces a data set consisting of 758 route-day records containing complete information for all required variables.

The first step in the construction of a load-time regression data set is to use recorded clocking in and clocking out times to measure total billed workhours (in minutes) for each route-day.  The total daily minutes for a route-day are then multiplied by the percentage of the day that was spent on the street.  This calculation provides total street time in minutes.  Finally, total street time was multiplied by the proportion of street time that was found to be load time.  This latter percentage was obtained from the same work-sampling database that was used to estimate the overall street-time percentages that the Postal Service presented in Docket R2000-1.  The result of these calculations is an estimated total daily load time measured in seconds.  

Prior to using this data set to estimate load-time regressions, we determined that 8 of the 758 records had to be eliminated due to obvious errors in values reported for key variables.  Four of these 8 deleted records have load times of zero or very close to zero.  One record was eliminated because it reports zero possible delivery points for all the delivery type categories.  Three other records were eliminated because they report zero cased letters, even though they also report large volumes of other mail shapes delivered over many possible delivery points.

The remaining 750 data records define the final regression data set.  No further investigations were made to verify the quality of the data in these records.  The next step in the analysis thus assumed all data points to be valid observations, and proceeded with the application of these data to the estimation of regression equations and the derivation of load-time variabilities from those equations.  

4.   Regression Analysis Using the ES Data Set

The generalized quadratic specification of the load-time equation defined for the new regression analysis is as follows:
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load time on route r on delivery day d
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          =
volume delivered on route r on day d for mail type i or mail type j, where i and j represent letters,  flats, parcels, or  accountables
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total possible delivery points on route r
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        =
the percentage of total possible deliveries that are type k deliveries, where k represents one of the following delivery point categories: residential other, residential curbline, residential central, residential NDCBU, business other, business curbline, business central, or business NDCBU delivery type.
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 are the coefficients to be estimated. Total letters delivered equals cased letters plus DPS letters and DAL cards, and total flats delivered equals cased flats plus SPRs.  

The specification of the load-time equation defined by equation 1 was chosen because it is the Postal Rate Commission’s theoretical specification of the load-time model.  The Commission’s Docket No. R90-1 Decision presents its rationale for choosing this form, and we did not investigate alternative forms at this point. 

Unfortunately, estimation of Equation 1 does not produce satisfactory results.  For example, virtually all estimated regression coefficients are not statistically significant.  In particular, the estimated coefficients for volumes are both insignificant and small in absolute value.  This means that the estimated elasticities of load time with respect to volume are essentially zero for flats, parcels, and accountables.  If accepted, these results would imply that there was virtually no additional load time associated with delivering flats, parcels and accountables and that only letters caused additional load time.  Clearly this result is not acceptable.  Also, the overall equation seems to perform poorly as the R-square statistic from the regression is only 31%.  


These poor results raise the question as to why a positive and significant relationship between volume and load time cannot be found in this data set.  Investigation of this question yielded the following insight.  For each of the volume shapes, and for accountables volume, there is a subset of observations that do not match the volume - load time relationship exhibited in the rest of the data.  For this subset of observations, load time is large due to factors other than the volume on the route.  These non-volume factors may, for example, be made up of certain aspects of the physical configuration of deliveries on the route, and the corresponding receptacles into which the mail is loaded.  But whatever these factors might be, they confound the underlying true volume-load time regression because their effects on load time are erroneously attributed to the volume terms.


This type of problem is illustrated in Figure 1.  Suppose that the true relationship between two variables, x and y is given by the solid line in that figure.  Now suppose that there are sets of observations that account for that underlying true relationship, but that also account for other extraneous influences on the y variable.  These observations are represented by the five dots that are set off by themselves in the upper left portion of Figure 1.  If one does not account for the extraneous influences, then the estimated regression line is the dotted one, apparently showing no relationship between x and y.
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Figure 1

This is just the problem in the ES load-time data.  The apparent lack of positive relationship between volume (x) and load time (y) comes from a subset of observations that have high load times relative to volumes.  In Figure 1, the problem is corrected through the inclusion of shift or “dummy” variables for those observations lying by themselves above the rest of the regression line.  By using dummy variables to account for the vertical displacement of these observations, the regression can accurately derive the true volume – load time relationship.

We pursued this approach in our estimation of the load-time regression.  Dummy variables were created that allow the regression line to “shift” for those observations that have very high load times relative to each of the shape volumes.  Including these dummy variables in the regression permitted estimation of the true volume - load time relationship.  Each such dummy variable was set equal to one for all observations for which the load time per piece (by shape, and for accountables) fell within the upper 10% of the distribution of all observations of load time per piece.  The dummy variable was set equal to zero for all other observations.

The inclusion of these dummy variables substantially improves the regression model’s fit to the data.  The results for this extended model are summarized in Table 3. The table includes an adjusted R-square statistic that has increased to 56.7 percent over the 31 percent value without the dummy variables.  The table also reveals many statistically significant coefficient estimates for the volume variables.  The coefficients produce marginal load times and elasticities for all the volume variables and for the deliveries variable that are positive and operationally sensible.  

Table 3

Quadratic Load-Time  Equation Based on the 

1996-1998 Engineered Standards Data Base

(t-statistics are in parentheses)

Independent Variable 
Coefficient Estimated

Intercept
-5,597.31 (2.68)

Load Time/Letters Dummy 
2,777.49 (8.48)

Load Time/Flats Dummy
2,161.75 (6.71)

Load Time/Accountables Dummy
2,292.01 (9.27)

Load Time/Parcels Dummy
1,164.32 (3.99)

Letters Delivered
1.30 (2.15)

Letters Delivered Squared
-0.0004 (3.40)

Flats Delivered
1.35 (.897)

Flats Delivered Squared
-0.002 (2.69)

Accountables Delivered
214.75 (2.03)

Accountables Delivered Squared
-7.59 (3.77)

Parcels Delivered
107.33 (2.77)

Parcels Delivered Squared
-0.75 (1.10)

Letters*Flats
0.0001 (0.16)

Letters*Accountables
0.04 (1.25)

Letters*Parcels
-0.01 (0.51)

Flats*Accountables
0.06 (0.92)

Flats*Parcels
-0.003 (0.09)

Accountables*Parcels
-2.10 (0.71)

Deliveries
1.33 (0.442)

Deliveries Squared
-0.002 (0.668)

Letters*Deliveries
0.002 (2.80)

Flats*Deliveries
0.004 (1.93)

Accountables*Deliveries
-0.10 (0.898)

Parcels*Deliveries
-0.06 (0.97)

% of Deliveries That Are Residential Other
6,132.81 (3.27)

% of Deliveries That Are Residential Curb
9,152.67 (4.83)

% of Deliveries That Are Residential Central 
7,979.13 (4.07)

% of Deliveries That Are Residential NDCBU
7,430.93 (3.78)

% of Deliveries That Are Business Other
4,828.31 (2.31)

% of Deliveries That Are Business Curb
1,692.19 (0.65)

% of Deliveries That Are Business Central 
10,486.00 (3.48)

R-Square
56.73%

F Statistic
30.67

Number of Observations
750


The critical impact of including the dummy variables is evident in the very high t-statistics associated with the estimated coefficients for these variables.  Clearly, the dummies effectively control for the effects of the unknown non-volume factors on load time.  They prevent these factors from distorting the coefficients of the volume and deliveries variables. 

Another important characteristic of this new regression is that, unlike the PRC’s regressions, it does not have receptacle and container dummy variables to control for the independent non-volume effects that container and receptacle types have on load time.  However, seven new variables are added that pick up some of these same non-volume effects.  These new variables are the percentages of total possible delivery points located in the delivery type categories of residential other, residential curb, residential central, residential NDCBU, business other, business curb, and business central.  


Table 4 summarizes the predicted and marginal load times and the load time elasticities produced by the new regression parameters presented in
Table 3.  These results are derived through the substitution of average values for the independent variables in the regression.  These average values, in turn, are the averages of the same ES data that were used to estimate the regression.  


Table 4

  TOTAL LOAD TIME PER ROUTE-DAY, MARGINAL LOAD TIMES, AND LOAD-TIME ELASTICITIES DERIVED FROM THE NEW LOAD-TIME REGRESSION 

Predicted Daily  Load Time
9,153.49 Seconds

Marginal Load Times (in seconds)

Letters
1.09

Flats
1.65

Accountables
185.46

Parcels
329.88

Deliveries
4.83

Estimated Elasticities

 Letters
22.61%

Flats
10.01%

 Accountables
7.94%

Parcels
4.63%

Deliveries
26.03%

The new marginal load times and load-time elasticities are clearly more plausible than the comparable results, presented in Table 2, derived from the official SDR, MDR, and BAM regressions.  The marginal load time for flats is now larger than the marginal load time for letters, and all five of the marginal load times with respect to volumes by shape are operationally feasible.   

Another positive aspect of the new regression is that it predicts total accrued load time much more accurately than does the established PRC model.  The regression’s credibility is enhanced by using it to predict the total daily load time on the route receiving the “average volumes.” 
   The predicted load time of 9,153 seconds per route per day (see Table 4) inflates to 125,542,000 hours over the 302 delivery days in FY 1998 and over the average of 165,417 city carrier letter routes in operation during that year.  At an average FY 1998 city carrier wage rate of $25.94 per hour, these hours convert into a total load-time cost of $3,294,893,000.  This amount is only 15.4% higher than the STS-based official FY 1998 accrued load-time cost of $2,856,175,000.  In contrast, the comparable predicted aggregate FY 1998 load-time cost that one can derive from the official SDR, MDR, and BAM regressions is only $1,462,151,000.  This latter estimate is 48.8% less than the $2,856,175,000 official accrued cost.  Thus, the load time predicted by the new load-time regression is clearly much more consistent with the true STS-based accrued load-time cost than are the predicted load times produced by the official PRC model.

5.
Variations in the Regression Based on Changes in Dummy Variables

A few variations of the new load-time regression just reviewed have also been estimated.  One variation evaluates the effects on the regression coefficients and resulting marginal load times and elasticities of varying the load time-per-volume values used to define the dummy variables.  It was demonstrated earlier that the inclusion of these dummy variables, which account for non-volume variations in load time (akin to the receptacle dummies in the PRC’s regressions), materially improved the performance of the equation.  Not only did the established quadratic model fit the data better after inclusion of the dummies, the estimated elasticities and marginal load times accorded with operational reality.

Although it is clear that inclusion of these dummy variables improves the econometric results, it is less clear exactly how the dummies should be specified.  Recall that the need for the dummies occurs because some sets of stops have high load times relative to their volumes.  This means that the model’s tracing of the relationship between volume and cost is confounded because each such set of stops has load time greatly in excess of what should be expected for its relatively low volume.  The dummies effectively control for this non-volume effect, and they enable the regression’s least squares algorithm to estimate a more precise relationship between changes in volume and changes in load time. 

What is not clear, however, is exactly where the cutoff should be in defining the set of stops used to identify each dummy.  The 10 percent tail of the distribution was used to derive values for the dummies for the regression estimation summarized in Table 3.  But it would be of value to investigate how the results change when other slices of the distribution are used to identify the dummies.  Therefore, this section presents the results of using alternative definitions of the dummy variables.  Specifically, it re-estimates the quadratic equation using a 1 percent, 5 percent, and 25 percent definition for the dummies.


Table 5 presents the results of these alternative analyses along with the results for the 10 percent definition.  Several pieces of information are included in the table to help compare the alternative results.  In particular, the table presents 

Table 5. The Effect of Different Dummy Variable Definitions 

Quadratic Load Time Regressions


1 PERCENT SLICE
 
5  PERCENT SLICE


Marginal Load Time
Elasticity

Marginal Load Time
Elasticity

 Letters
0.612
13.48%
 
0.789
17.86%

 Flats
0.319
2.06%
 
0.217
1.44%

 Accountables
64.470
2.94%
 
91.480
4.28%

 Parcels
744.778
0.61%
 
394.139
2.52%

 Deliveries
4.917
28.26%
 
4.137
24.41%


Significant at 5% Level?
 
Significant at 5% Level?

 Test 0
No

 
Yes
 

 Test 1
No

 
No
 

 Test 2
No

 
No
 

 Test 3
No

 
No
 

 R2
0.413

 
0.491
 

 F
16.270

 
22.332
 


 
 
 
 
 


10  PERCENT SLICE
 
25 PERCENT SLICE


Marginal Load Time
Elasticity

Marginal Load Time
Elasticity

 Letters
1.094
22.61%
 
1.166
25.76%

 Flats
1.647
10.01%
 
1.781
11.57%

 Accountables
185.460
7.94%
 
144.855
6.62%

 Parcels
329.884
4.63%
 
21.484
6.61%

 Deliveries
4.825
26.03%
 
2.828
16.29%

 
Significant at 5% Level?

Significant at 5% Level?

 Test 0
Yes

 
Yes
 

 Test 1
Yes

 
No
 

 Test 2
Yes

 
No
 

 Test 3
Yes

 
No
 

 R2
0.567

 
0.678
 

 F
30.365

 
48.679
 

the marginal load times and elasticities by shape, and the R-square and F statistic from each regression.  It also presents the results of the following sequence of F tests.  T0 tests whether the linear terms in volumes and deliveries are jointly significant; T1 tests if squared terms for volumes and deliveries are jointly significant; T2 tests if the squared terms only for volume are significant, and T3 tests if all of the higher order terms are jointly significant.  It is this last hypothesis test that can be thought of as the test of the quadratic versus linear model.

The results show the following patterns.  As additional data are included in the dummy variable definition, the marginal load times for letters and flats generally rise, but the marginal load time for parcels falls.  At the 25 percent slice, the marginal load time for parcels becomes extremely low in both an absolute sense, as well as relative to the other three marginal load times for parcels shown in Table 5.  The accountables marginal load time has no discernable trend.  Finally, the elasticities for letters, flats, and parcels generally increase as the amount of data included in the dummy variable definition increases.

These results show that none of the threshold levels produces more plausible regression results than does the initially chosen 10 percent level used to define the dummies included in the regression summarized in Table 3.  At this level, the model produces the most favorable combination of parameters in terms of both operational credibility and statistical precision.  Specifically, the 10 percent version of the model produces statistically significant F-values for all four F tests, and a relatively high R-square.  Moreover, although the R-square produced by the 25 percent version is even higher than that produced by the 10 percent version, three of the four F-values in the 25 percent version are statistically insignificant.  

Furthermore, the 10 percent version produces realistic positive marginal load times, including a marginal load time for flats that is higher than the corresponding marginal load time for letters.  This contrasts favorably with the results of the 5 percent version, which combines a marginal flats load time that is unrealistically lower than the marginal letters load time, with three statistically insignificant F values, and an R-square that is significantly lower than that achieved by the 10 percent version.  Thus, the initial model specification that produces the regression summarized in table 3 is superior to the alternatives produced by changes in the dummy variable specifications.

6.  
The Effects of Isolating DPS Letter Volume  

A second variation of the route-based regression analysis splits the letters delivered volume into two separate variables – one defined for DPS letters, and the other defined for non-DPS letters.  These DPS and non-DPS letters variables are then squared and interacted with all other volume variables and with the deliveries variable in the same manner as is described in equation 1.  In addition, the load-time per letter dummy variable is replaced by two separate load time per piece dummies – one defined just for DPS letters, and the other defined for non-DPS letters.  The specification of the remaining load-time per volume dummy variables and the delivery type percentage variables remains unchanged.

However, the DPS terms added to the equation are undoubtedly highly co-linear with the non-DPS letters and other volume terms in the equation.  This multicolinearity problem is strongly suggested by two troublesome aspects of the parameter estimates calculated for the new model.  (These estimates are shown in Table 6).  First, the marginal load time for parcels increases from the 329.88 seconds derived from the regression summarized in Table 3 to an unrealistically high 781.17 seconds, as shown in Table 7.  It would seem impossible to justify this result, as it predicts that the loading of an additional parcel, on average, increases load time by over 13 minutes.  Secondly, virtually all of the estimated coefficients for terms involving DPS are statistically insignificant; and although a total of eight such terms are added to the right-hand side of the regression, this addition increases the R-square by only about one percentage point, from 56.73% (Table 3) to 57.69% (Table 6).  

Thus, the evaluation of the effects of splitting the letters variable into separate DPS and non-DPS variables affirms the conclusion reached at the end of section 5.  Specifically, the basic quadratic regression summarized in Table 3 that uses the 10 percent threshold level to determine values for the dummy variables is the most operationally plausible as well as statistically sound new model currently available.  This regression does not have a separate DPS volume variable, aggregating instead DPS letters and non-DPS letters into a single variable.  Therefore, the coefficients it produces for terms involving letter volumes must be regarded as estimates of the average changes in load time that result when combined DPS and non-DPS letter volumes increase by one piece.  However, this averaging would appear to be an acceptable price to pay in exchange for the more realistic marginal load time for parcels, and the much higher frequency of statistically significant coefficient estimates produced by the Table 3 regression.

Table 6.

The Quadratic Load-Time

Equation Containing a Separate DPS Variable.

(t-statistics in parentheses)

Independent Variable 
Coefficient Estimate 

Intercept
-5,729.23 (2.73)

Load Time/Non-DPS Letters
 1,991.99 (6.41)

Load Time/DPS Letters
1,591.43 (5.19)

Load Time/Flats
 2,180.69 (6.79)

Load Time/Accountables
 2,211.09 (8.94)

Load Time/Parcels
 1,415.85 (4.73)

Non-DPS Letter Volume
3.53 (3.52)

Non DPS Letter Volume Squared
-0.001 (4.56)

DPS Letter Volume  
0.1692 (0.25)

DPS Letter Volume Squared
0.00003 (0.25)

Flats Volume
1.40 (0.92)

Flats Volume Squared
-0.001 (1.40)

Accountables Volume
188.83 (1.78)

Accountables Volume Squared
-6.96 (3.26)

Parcel Volume 
127.22 (3.10)

Parcels Volume Squared
-0.75 (1.09)

Non DPS Letters* DPS Letters
-0.0001 (0.38)

Non DPS Letters *Flats
-0.0008 (1.30)

Non DPS Letters *Accountables
0.008 (0.18)

Non DPS Letters *Parcels
0.01 (0.50)

DPS Letters*Flats
-0.0005 (0.92)

DPS Letters *Accountables
0.097 (2.78)

DPS Letters *Parcels
-0.01 (0.94)

Flats*Accountables
0.06 (0.92)

Flats*Parcels
-0.01 (0.38)

Accountables*Parcels
-4.00 (1.32)

Deliveries
3.54 (1.17)

Deliveries Squared
-0.003 (1.12)

Non DPS Letters *Deliveries
0.0003 (0.28)

DPS Letters*Deliveries
0.002 (2.00)

Flats*Deliveries
0.005 (2.19)

Accountables*Deliveries
-0.11 (0.93)

Parcels*Deliveries
-0.09 (1.35)

% of Deliveries That Are Residential Other
5,630.73 (2.99)

% of Deliveries That Are Residential Curb
8,384.55 (4.39)

% of Deliveries That Are Residential Central 
7,394.62 (3.74)

% of Deliveries That Are Residential NDCBU
7,251.71 (3.65)

% of Deliveries That Are Business Other
3,539.58 (1.68)

% of Deliveries That Are Business Curb
312.98 (0.12)

% of Deliveries That Are Business Central 
9,973.66 (3.31)

Diagnostic Statistics


R-Square
57.69%

F Statistic
24.82

Number of Observations
750



Table 7. 

 TOTAL LOAD TIME PER ROUTE-DAY, MARGINAL LOAD TIMES, AND LOAD-TIME ELASTICITIES DERIVED FROM THE LOAD-TIME REGRESSION INCLUDING A SEPARATE DPS TERM

Predicted Total Load Time Per Route-Day
9,252.17 Seconds

Marginal Load Time With Respect to Non-DPS Letters
    1.34 Seconds

Elasticity of Load Time With Respect to Non-DPS Letters
  11.96%

Marginal Load Time With Respect to DPS Letters
    0.88 Seconds

Elasticity of Load Time With Respect to DPS Letters
 10.17%

Marginal Load Time With Respect to Flats
    1.52 Seconds

Elasticity of Load Time With Respect to Flats
    9.16%

Marginal Load Time With Respect to Accountables
185.51 Seconds

Elasticity of Load Time With Respect to Accountables
     7.85%

Marginal Load Time With Respect to Parcels
781.17 Seconds

Elasticity of Load Time With Respect to Parcels
    4.88%

Marginal Load Time With Respect to Deliveries
    4.24 Seconds

Elasticity of Load Time With Respect to Deliveries
 22.61%

Finally, it should be noted that other regressions were estimated besides the ones summarized in Tables 3-7.  These include separate estimations of equations for three separate route groups – all curb routes, all park & loop plus business motorized routes, and all foot routes.  Regressions were also estimated on the new ES dataset after its values had been multiplied by the same tally weights that had been used to estimate the new street-time percentages applied in the BY 1998 worksheets.  Finally, regressions were estimated for specifications that added a new set of load-time per volume dummy variables that account for sets of stops that have very low load times given the volumes of mail delivered.  These dummy variables are set equal to one in all cases in which the load time per piece ratio is so low that it falls within the bottom 10 percent of the distribution of all possible ratio values.  

However, all of these additional regressions produced operationally and statistically infeasible results, including such problems as negative marginal load times and elasticities.  Therefore, there is little point in reporting these results in detail.  The unacceptability of these results further supports the choice of the tables 3-4 regression results as the most plausible estimations that have been derived so far through use of the new ES data set.

7.
Evaluating the Results

In this section, we review and evaluate the results of the econometric research presented in sections 2-6.  We are fortunate that an existing benchmark exists that helps us evaluate the new load-time regressions.  The official PRC regressions are used by the Postal Service as well as by the PRC to calculate load-time elasticities and volume-variable load time costs.  The PRC model therefore establishes the current standard for judging new load-time regressions, and it seems sensible to compare the results of the new load-time regressions with that standard.


The official load-time regressions possess two salient characteristics relevant for this comparison.  First, these regressions are estimated at the stop level and, second, they are estimated with 1985 data.  Consider first the advantages and disadvantages of using stop-level data to estimate the regressions.  One advantage is that the data are defined at a “microscopic” functional level and thus provide an operational understanding of the estimated variabilities.  Because the econometric analysis investigates how load time behaves at a single stop, it permits ready interpretation of the results.  It is easy to envision how additional volume can cause additional load time at a single stop, and it is easy to envision why there may be economies of scale in that loading.  Additional pieces can be loaded with existing pieces and thus do not create as much additional load time as do the “original” pieces.


The other advantage of using stop-level data is that it permits separate regressions to be estimated for the three different types of stops: SDR, MDR, and BAM.  This disaggregation can also assist in operational understanding by enabling analysts to investigate load time in different loading environments.  The availability of different equations for three different stop types offers an opportunity to gain greater insight into the nature of scale economies in loading mail than could otherwise be attained.


There are some serious deficiencies in the regression analysis of stop-level data, however.  First, the PRC regressions actually do a poor job in explaining variations in load time at the individual stop.  This problem is made evident by both the low R-square of the SDR regression, and the highly inaccurate predictions of aggregate load time produced by all three regressions.  As demonstrated in the last rate case, and in section 4, page 9 of this report, the stop-level load time regressions grossly under predict aggregate accrued load time by about one-half.  The reason for this poor performance is that volume is not the primary driver of load time at the individual stop level.  When the analysis is performed at such a granular level, factors other than volume, such as receptacle type, dominate the variations in load time. Witness Bradley demonstrated this result in his Docket No. R90-1 testimony by showing the wide variations in load times that the stop-level regressions predict for the exact same volumes.  Obviously, if two (or more) stops have exactly the same volume but widely different load times, the variation in load time must be coming primarily from non-volume factors. 

Review of the stop-level data shows tremendous amounts of variation in load time for a given vector of loaded volume.  This weakness in stop-level analysis shows up in two ways.  The poor predictive ability of the regression, discussed above, is one.  The other is the large number of infeasible regression parameters that produce unrealistic marginal load times.  These results are shown in Table 2 above.  Some examples, already presented in section 2, include the derivation of marginal MDR and BAM load times that are inexplicably higher for letters than for flats.  Furthermore, the estimated marginal BAM load times for both letters and flats are highly suspect in an absolute sense, as they are so are much lower than comparable estimated marginal load times at SDR and MDR stops.  Indeed the marginal BAM load time for flats is so low that it is virtually zero, in as much as an activity truly taking only 0.07 seconds to complete would take place so fast as to be virtually unobservable and undetectable by the type of timing equipment used in the 1985 LTV study

Further analysis uncovers additional, similarly disturbing anomalies in the SDR, MDR, and BAM statistics.  The marginal BAM load time for collections is even lower than that for flats, and although the marginal BAM load times for letters and parcels are at least within the feasible zone, they differ substantially and inexplicably from the marginal SDR and MDR load times for letters and parcels.  There is no apparent operational basis for the models’ prediction that it should take, on average, 12 to 15 seconds to load an additional parcel at an SDR or MDR delivery point, but only about half that much time at a BAM stop.  Similarly vexing is the wide variation in marginal load times for accountables and letters derived from the SDR, MDR, and BAM regressions.  The unavoidable question of what kinds of variations in stop characteristics would cause such apparently indiscriminate variations in marginal load times across stop types remains unanswered, and, indeed, has probably never even been investigated. 

Thus, although theoretically, the stop-level analysis has offered the potential for derivation of useful operational insights into mail delivery, the operationally nonsensical results produced by the SDR, MDR, and BAM parameters establish that efforts to exploit that opportunity through the official regression analysis have failed.  Whether this failure was an inevitable result of the limitations of a stop-level data set that explains most of the variation in load time across stops through variations among receptacle and container types, or whether it was caused by flaws in the econometrics of the official model’s regression estimation is unclear. 


The second major problem afflicting the stop-level approach to load time analysis is the inability of such an approach to produce a sensible quantification of what is known as “coverage-related load time.”  When mail volume rises, there are two ways that additional load time will occur.  First, additional load time will occur at a stop that had already been receiving mail prior to the volume increase, and that now gets more mail.  This increase in load time at the existing actual stop has become known as the “elemental” load time effect.  It is derived from the variabilities of load time with respect to volumes, as computed based on the stop-level data analysis.  Second, additional load time will also occur at stops that had not previously received mail, but that now receive mail due to the volume increase.  When mail arrives at a previously “uncovered” stop, the carrier must initiate a new loading operation.  The increase in time resulting strictly from this new activity at the new covered stop is known as the “coverage-related” load time effect.

Unfortunately, the stop-level analysis offers no way to directly capture this coverage effect, so a contorted indirect analysis has to be constructed.
  Specifically, to remedy the deficiency of the stop-level analysis, this indirect analysis computes the so-called residual time from the stop-level load-time equation.  This residual equals the total predicted load time at a stop minus the elemental load time, which is, in turn, computed as the sum of the load time variabilities with respect to volume times total predicted time.  The indirect analysis then multiplies this residual load time by the relevant access time elasticity, which is obtained from the SDR, MDR, or BAM actual-stops regression, to compute so-called volume-variable coverage-related load time. 

The defects of this approach have been documented by witness Baron in his Docket No. R97-1 and Docket No. R2000-1 testimonies, and will not be repeated here.  A simple illustration highlights the major problems.


First, because the residual approach defines volume-variable coverage-related load time as the total load time minus elemental load time residual times an access elasticity, it imposes on the variability analysis the absurd pronouncement that, as the aggregate elemental load-time variability rises, the coverage related load-time variability must fall.  Thus, it dictates the rigid a priori condition that as the variability of load time at already-covered stops approaches 100%, coverage-related load time approaches zero!  Of course, there is absolutely no operational basis for such a peculiar restriction.  If the elasticity of load time at covered stops was indeed 100 percent, this obviously could not prevent additional volume from creating additional load time at a new stop.  Thus, it really could not cause the coverage-related variability to go to zero.

The second salient characteristic of the official load-time model is that it is based upon 1985 data.  This has two implications.  First, to the extent that the volume distribution at stops has changed since 1985, the official SDR, MDR, and BAM regressions do not account for the implications of the change.  An obvious example is the introduction of DPS volume.  As these volumes are excluded from the 1985 data set (they did not exist in 1985), the established regressions cannot possibly account for their impact on load time. 

 A second implication is that the variabilities derived from the SDR, MDR, and BAM regressions are estimated on a data set that is inconsistent with the 1996-1998 ES data that have been used to compute the new city carrier street time percentages and corresponding new accrued activity cost pools.  The load-time percentages in particular within this set of new percentages include the effects of DAL cards, DPS volumes, and other changes in the volume vector that have occurred between 1985 and the 1996-1998 period.  However, the SDR, MDR, and BAM variabilities applied against the new activity cost pools do not incorporate the effects of these volume changes.  Thus, those variabilities become more and more suspect as the impact that the volume changes have had on the true load time-volume relationship increases.


We now turn to the econometric equations estimated on the ES data set.  As noted earlier, these equations are estimated on route-level ES data derived from the 1996-1998 work sampling and time study data collected by the Delivery Redesign – Engineered Standards study team.  These new equations also have significant advantages and disadvantages.


The primary disadvantage of the new route-level analysis is that it does not provide the easy operational interpretation associated with a stops-level analysis.  The new analysis only evaluates how load time aggregated over the entire route on a given route-day changes in response to changes in total route-level volume and volume composition.  This limitation is mitigated, however, by the fact that an analysis at the stop level has already been performed.  The intuition gained in that earlier analysis can now be applied to the new route-level analysis.  We know that additional volume can cause additional load time in only one of two ways, by causing additional load time at stops already receiving mail, or by producing load time at newly covered stops.

The other potential drawback of a route-level analysis is that it does not permit separate equations to be estimated by stop type.  The route-level analysis produces just one regression to account for the response of load time to volume across all three stop types – SDR, MDR and BAM.


These potential disadvantages must be weighed against the many positive aspects of the route-level analysis.  First, as described above, the route-level analysis provides operationally feasible results.  A route-level analysis is disrupted to a much lesser extent by the granularity problem that so greatly affects the stop-level analysis, in which factors other than volume explain most of the variations in load time across stops.  This lesser exposure to the problem of large non-volume effects on load time can be seen in the fact that the route-level data produce sensible marginal load times, and in the fact that the route- level regression predicts total load time so much more accurately than do the official stops-level regressions. 


The route-level approach also provides a direct and sensible method of accounting for coverage-related load time.  The new route-level regression summarized in Table 3 includes possible deliveries as an additional independent variable.  The elasticity of load time with respect to these deliveries measures how an additional delivery creates additional load time.  Although it is true that the variable defined in the table 3 regression is possible deliveries, an additional delivery can only cause additional load time if mail is delivered to it.  Thus, this elasticity is correctly interpreted as the effect of an additional “actual” delivery on load time.  This, of course, is just a measurement of the coverage-related load time effect.


The new route-level regressions presented in this report are also estimated on much more recent data than are the official SDR, MDR, and BAM regressions.  This fact presents several obvious advantages and one disadvantage.


The disadvantage is that the current data set does not include the volumes collected at a stop, only the volumes delivered.  It is thus difficult if not impossible to estimate the elasticity of load time with respect to collected volume.


On the other hand, the more recent data set includes the significant advantage that it reflects the current volume mix and current operating practices.  When volumes and methods of delivery are changing, it would seem to be a substantial advantage to have more recent data that reflect those changes.  In addition, the data used to estimate the new variabilities presented in this report match exactly the data used to derive the new carrier street-time percentages used in the BY 1998 city carrier worksheets.  Thus, we can be confident that whatever changes in volume and operations caused the change in the load time percentage in particular to increase so much above its 1986 STS level are also captured in the estimated route-level variabilities applied to the new accrued load-time cost pool.


In sum, the evaluation of the new route-level load-time regression presented in Table 3 and the determination of its merits relative to the official stop-level SDR, MDR, and BAM regressions presented in Table 1 depend upon the relative weights assigned to competing considerations. The explicit incorporation of the load-time effects of both stop type and collection volumes achieved by the stop-level regressions tends to support the continuing use of those regressions in place of the Table 3 route-level regression, which directly accounts for neither the stop-type nor collection-volume effect.  However, the route-level regression’s use of more recent data, its much improved econometric estimation, its operationally sensible results, and its good predictive performance present perhaps even more compelling reasons to substitute it for the stops-level regressions.























� A. T. Kearney, Data Quality Study, Technical Report # 4: Alternative Approaches For Data Collection, April 16, 1999, pages 53-56.  

�  See, Pindyck, Robert S. and Rubinfeld, Daniel L., Econometric Models and Economic Forecasts, McGraw Hill, New York, 1981 at 93-94.



� Docket No. R97-1, Opinion and Recommended Decision, Volume 1, at 164-165.

� 	The calculation is performed at the mean volumes from the ES database used in the econometric estimation.  All other independent variables are set equal to their ES data averages as well.

� There is no load time at a stop that does not have any volume.  Thus, a stop-level analysis cannot include, by definition, the effect of additional volume on stops that are not currently receiving volume.



�  An alternative approach proposed in the last case focuses on the argument that the possible deliveries term is just a “control” variable, and that the volume terms capture all affects of volume on load time.  Under this view, the elasticities of load time with respect to just the volume terms account for both the additional  “elemental” load time and the additional “coverage-related” load time caused by volume growth.  This view therefore regards the positive deliveries elasticity derived from the Table 3 route-level regression as accounting for some increase in load time other than the increase in load time caused by the carrier accessing a new “actual” delivery.  However, what this alternative increase in load time and its associated activity might be that the positive deliveries elasticity is presumably accounting for in this case is unclear.                   
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