RPW OVERVIEW

RPW-CODES

Data Entry Application

Technical Documentation

Library Reference # I-36

PLEASE SEE USPS-LR-I-35 FOR AN OVERIVEIW DESCRIPTION OF THE RPW CODES SYSTEM DOCUMENTATION, INCLUDING THE CONTENTS OF THIS LIBRARY REFERENCE.

The RPW system collects data on revenue, pieces, and weight of domestic mail by class and subclass of mail, and fees by type of service, as part of the Postal Service’s Cost Revenue Analysis System. Sampling units selected for testing are randomly chosen from the ORFEO System on a quarterly basis. The design of the RPW System is to test both incoming and originating units.

Information required to determine revenue, pieces (volume) and weight for classes and subclasses of mail is obtained from the Postal Service’s accounting system and from a variety of sampling systems, including the Domestic Probability Sampling System. For those classes of mail which have unique revenue codes in the chart of accounts, volume and weight data are obtained from a sample of mailing statements. Revenue, volume, and weight estimates for most other classes of mail are obtained from the Domestic Probability Sampling System.

Revenue, Pieces and Weight data are required by the Postal Reorganization Act. Without such data, the Postal Rate Commission could not estimate unit costs and revenue by category, which is essential for developing fair and equitable postage rates. In addition, RPW data is used to develop the revenue unit measure underlying the CAG classification of post offices. The Controller and the Planning Department use RPW data to advise senior management on budgeting and planning issues including productivity measurement. This data is also used to:

1.
Plan the Postal Service budget, based on forecasts of the mail volume, workloads, and overall

productivity

2.
Monitor productivity increases associated with automation programs

3.
Assess deviations of actual volume from projected volume

4.
Analyze other major postal service activities affecting costs and revenue.

Under the current system of sampling at delivery points, revenue, pieces and weight estimates are obtained by random probablity samples of the mail. Delivery points include

[image: image1.png]
[image: image2.png]
carrier routes, box sections, special delivery sections. etc. Days are selected at random throughout the year. On these days, the mail is counted for randomly selected delivery points. Data pertaining to publishers’ second-class mail, third-class bulk-rate permit imprint, and fourth-class permit imprint bound printed matter are developed from mailers’ forms such as Form 3602. Counting mail at the delivery points, particularly at carrier routes, is the most feasible and least expensive means of capturing data on incoming mail. By spreading the counting operations for these small sampling units over randomly selected days throughout the year, the true characteristics of the billions of pieces of mail delivered during the year are accurately reflected by the sample.

Headquarters uses computers to select randomly the units and the days to be sampled. The ready-made lists of units to be sampled are furnished quarterly to the sample offices. This assures complete objectivity, minimizes the sample selection workload in the field, and reflects the actual situation.

Probability sampling uses mathematical laws which provide a basis for calculating the precision of the estimates derived from the sample. Thus, the Postal Service is better able to determine the reliability of the data for the particular uses they are designed to serve. Only probability sampling provides this advantage. Because the results of a probability sample can be evaluated using probability theory, the precision of the estimate can be measured and when defending the data before the Postal Rate Commission, courts of law, or at public or legislative hearings.

Even in a complete census, accurate reports are essential to the development of data results. In a sample, the need for accurate reports is even greater, insofar as sampled data is usually inflated to develop population estimates; therefore, extreme accuracy and care are essential at data collection points. Because of the relatively small sample used, an error in recording a single piece of mail can be magnified to affect the estimates by thousands of pieces of mail. The list of selected samples is downloaded to the participating post offices each quarter. The post offices identify the sampling units, as well as the location and the day, from the information on the quarterly sample selection printout. They also assign the trained personnel to conduct the count.

[image: image3.png]
[image: image4.png]
[image: image5.png]
4. Review the rate table

Display current rates by mail class. Also display category codes.

Functions available from the subfunctions menu:

1. Input mailpiece data

Calls the data entry routine. This is the main routine found in the rpwentry.c module. All mailpiece and special service data can now be recorded. If a test is being subsampled the user can enter subsampling type and skip interval prior to inputting mailpiece data.

2. Review within a session

Review/delete RPW data records for the active session.

3.
Abort a session

Place an “A’ in the last byte of the active session’s data records. Does not write a session record. Return to main menu.

4. End session and save

Update the session file and return to the main menu.

Rpwentrl.c and RDwentr2.c are the largest modules. In them takes place all of the actual mailpiece data entry. The main controlling function is called data entry(int
*routine number) . After turning off the cursor the data entry form screen is popped. Data_entry consists of a switch statement inside a loop. Sub status is an integer which is the focus of the case statements inside the switch. It determines which routine to call next. Most of the routines called as a result of a particular case statement involve the display of a new data entry menu in the “data entry” window in the upper right corner of the screen. After a menu choice is made the appropriate subordinate routines are called, the sub_status variable is reset, and a break or return statement forces a return to the case statement. A break statement forces processing to the top of the main loop, and then drops, according to the new value of sub_status, to the appropriate case statement and corresponding next routine.

It is important to understand how several of the subsystems within Rpwentr*.c work. As an example, the logic behind the input of a first class letter follows:

I.
Sub_status is initially 0, therefore case 0 is

recognized by the main switch logic. Pop listl, the

first data entry menu, is called.

1.
Num input is called. This routine gets a keystroke.

2.
The user chooses “1. First Class”.

3.
“First Class” is displayed in the mailpiece summary window.

4.
Byte 0 of the five byte buffer named “class” is turned on by placing a ‘1’ in it. This denotes first class.

5.
Sub_status is set to 1.

6.
Control is returned to the main switch statement.

II.
Since sub_status is now 1, case I is recognized and Pop list2 is called.

1.
Num input is again called to get a response from the user.

2.
The user chooses “1. Single Piece”.

3.
“Single piece” is displayed in the mailpiece summary window, under “First class”.

4.
Byte 3 of the buffer named “bucketl” is turned on by placing a ‘1’ in it. This denotes single piece. See the following section concerning “byte buckets”.

5.
Sub_status is set to 2.

6.
Control is returned to the main switch statement.

III.
The same sort of logic continues as the mailpiece is identified to the system. Further inputs required include subclass, number of pieces, weight, special services, indicia, whether private, government, or USPS, standard or not, automation compatible or not, revenue from enclosures or not, etc.

Along the way the category code, proper revenue, and any special services for the mailpiece are determined. How these things are accomplished is discussed below. When input is complete the mailpiece will have been summarized on the screen in the “mailpiece summary” window. Special services will appear in the “Special service summary” window. Proper revenue will be listed in the “Revenue Summary” window. The category code will appear below the revenue summary window.

The user can then choose to accept the mailpiece as shown, erase the screen and start over, escape back to the submenu by returning to the calling program

(RPWENTRY.C), or indicate that the actual revenue on the mailpiece differs from the suggested revenue.. At this point he can input the “other” revenue and the program will compute the revenue variance and display it in the revenue summary window.

How to determine the category code
Each class of mail, certificates of mailing, and international mail has an area of memory called a “byte bucket” associated with it. The byte bucket for first class is 11 bytes long. Each byte position is significant. Letter, card, single piece, 5 digit presort, local or nonlocal, and standard or non- standard are examples of things represented by a particluar byte location. As the mailpiece is “built” on the screen the correct bytes in the bucket are turned on by placing a ‘1’ in them. When the mailpiece is finished a unique representation of ls and Os has been created.

External bucket files, which are master lists of valid bucket combinations, have been read into arrays of structures at the beginning of the RPW.C module. For example, Bucket.lst contains all first class buckets. It was read into the extern struct bucketl *bucket 1st array. The newly created bucket is compared sequentially with the first 11 bytes of the array structures until a match is found. The last four bytes of the matched array structure is the category code.

How to determine the correct rate
Rate lookups are base on category code. The file “rates.dat” was read into a two dimensional integer array at the beginning of the Rpwentry module. The routine void revenue (mt *sub status) is called to perform the actual lookup. It is separated into sections based on mail class. Each section contains the proper formulas and rate table coordinates to calculate the revenue for the mailpiece. Some formulas are based on weight per piece and some (4th class parcels, for example) on zones. Revenue is stored in the extern long mt mail rate.

[image: image6.png]
[image: image7.png]
[image: image8.png]
Determining Special Services
For most mailpieces there are a number of special services which can be purchased. These include certified, special handling, return receipt, special delivery, etc. Several tables have been developed to simplify the task of determining which special services are appropriate for a given mailpiece. They are incoming.dat (incoming mail tests) , origreg.dat (originating registered test) origins.dat (originating insured test), and origcod.dat (originating COD test) . These tables are read into arrays of structures at the top of the Rpw.c module. Each structure in the array is separated into 4 byte elements, each containing a category code. The first element is a normal mailpiece category code such as 1100, for first class letter. The remaining elements in the structure are special service category codes which may be associated with category 1100 mail. The logic to accomplish this table lookup is in a module entitled Rpwss.c. The routine get ss(int
*sub status. mt element) is called from the rpwentry. c module. According to the test class stored as tclass, each special service category code is read and a further validation is performed to select those special services which are allowed for the weight of the mailpiece. Those special service category codes passing this test are stored in an array called ssnum array. According to the number of special services allowed, a window size to display them is determined and memory is allocated to save that portion of the data entry screen. A blank window is popped. It is

filled by doing a
sscatcod array,

finding the code, extracting the description of the special service from the array element, and displaying it in the window. The sscatcod_array element number is stored in an array called ss element. A light bar is provided to enable the user to choose a special service. When the user presses the carriage return the special service rate is calculated (see next section) , the special service description. rate, and category code are stored in an array called

ss fields array, the data entry screen is restored, the sub_status variable is set, the special service rate is displayed in the revenue summary window, and control is returned to the rpwentry.c module.

[image: image9.png]
[image: image10.png]
Determining Special Service Revenue
Certain ss category codes represent combinations of special services, up to three. Each structure in the sscatcod_array has 6 elements following the ss category code. These are row and column coordinates in the rate table for the three possible rates. If a row, column pair contains blanks then there must have been less than three special services in the combination. An ss category code might have only one rate lookup required. In this case the second and third row/column pair will be blank. The rate (or total if more than one rate) is stored in the extern variable ss rate and saved in the ss fields array mentioned above.

Getting the zone for zone rated mail
Each data entry site downloads from the mainframe a series of zone table files, one for each zlp code area in which they could be taking tests. The zone file consists of a 3 digit zip followed by 999 two-byte fields. The location of each field corresponds to the value of the first three digits of the zip code on the mailpiece return address. As an example, a test is being taken in zip area 223 and a parcel is arriving from zip 456. The file 223.zon will have be loaded into struct zone in rpw.c. A pointer is moved to the 456th 2-byte field following the first element (test site zip) The first byte of the 2-byte field being pointed to is the zone. The second byte is the intra-bmc indicator. This is used in the rate lookup logic if it is true. When doing a lookup in the rate table for a zone rated piece the zone (possible values 1 - 9) will represent the column in the table.

RPWLIB.C contains several routines which are used by more than one of the other modules.

Rpwcomm.c is the module which contains the code to communicate with the electronic scale. It is an interrupt driven routine written using the Greanleaf Comm Library. An interrogation string, “SGW” is sent to the scale. If the scale has not responded in 5 seconds a timeout occurs and the user is prompted for the weight. If the scale responds properly it will send the weight of the piece(s), in ounces carried to 1 decimal place, followed by a carriage return/linefeed combination.

Rpwvideo.c contains all routines which pertain to the handling of the screen. Video.h is the header file included in this module. It contains the structure video info, which is used to store attibutes, cursor scan lines, and the display segment address for the monitor in use. One of the routines in this module is mit video(void), which looks at the monitor type and loads the video info structure accordingly. Other routines write strings and buffers to the screen at row, column locations with attribute, save portions of screens, pop windows and screens, restore screens, and handle the cursor.

Rpwss.c is the module containing the code to display the available special services for a particular mailpiece, get the user selection, determine the special service category code and rate, and then restore the data entry screen and return to the calling module (rpwentry.c) . See the section on determining special services and rates.

Rpwrevnu.c is the module which performs the lookup for all rates in RATES.DAT. For first class and third class, where the rate structure is complicated by various sortation and entry level discounts, the rates are displayed in a “pick list” in a window on the screen. For other categories, the rates are merely calculated and displayed.

Datafile. rpw
Datafile.rpw, is produced at each test site. It contains all of the revenue, pieces, weight, dimension, and other data collected at the site. The record format is included in this document.

Parent and Child Records
In the RPW datafile, slightly different record formats are used to distinguish basic mailpiece information from special service information. A “parent” record contains information pertaining to the mailpiece itself, exclusive of special services like insurance, registered~ return receipt, special handling, etc. “Child”, or special service records immediately follow a parent record. There may be more than one. Child records are identical to their parent except that a Special service Category Code is placed in the sscatcod field of the data record. The field called sspointer is used to relate the parent and child records. If a parent record has no children, this field is blank. If one or more child records exist then the ss_pointer field in the parent record is “ 1” and the succeeding child records are numbered “ 2” through whatever. This linkage is very important in downstream processing. The special service category code will only appear in child records. These codes can be found in the file named Sscatcod.dat.

Data Elements
The following data elements make up Datafile.rpw. See the data file structure in appendix D.

Finance Number
Finance number refers to the actual test site. Used in cinjunction with Ucode it forms the test ID. The finance number can be found in the file Rpwsmpl.dat, which will be on the initialized master RPW data entry diskette sent to the site by the managing MSC or Division. See the record structure for Rpwsmpl.dat in the appendix.

Ucode
The universe code refers to the type of test being taken, i.e. incoming Special Delivery, normal incoming. originating COS, Insured, or Registered, or Certificates of Mailing.

Test date
Testdate, in the format MMDDYY, will be the same as the system clock date.

Version
RPW is currently at version 4.6.

Time
Time, in the format HHMM, will be the same as the system clock date.

Blowup
Blowup is used when weighted or counted subsampling has been employed. It is the same as the ‘skip interval for counted tests and is the ratio of total mail pieces to sampled pieces for weighted tests.

Category
This field contains the category code for the mailpiece. This code is found in the file Catcodes and denotes the exact type of piece, i.e. “first class, single piece, letter”. This code is different from the special service(s) category code, described below.

Pieces
Denotes number of pieces of identical mail being sampled.

Revenue
This field holds revenue per piece, to a tenth of a cent. It contains no explicit decimal point, is right justified, and contains leading blanks. Some examples:

$5.35 is placed in the revenue field as bbbbb5350, where ‘b” denotes a blank..

$23.52.3 (twenty three dollars, fifty-two and three tenths cents) is placed in the revenue field as bbbb23523.

If there are more than one piece, then only the revenue per piece is put here.

Special service(s) records will have the special service(s) fee(s) here.

Pounds
Integer pound weight of the piece up to 70, right justified, leading blanks.

Ounces
Ounce weight of the piece(s) taken to one decimal point. If the piece(s) weigh less than 1 pound, this will be the total weight of the piece(s) - If the piece(s) weigh 1 pound or more this field contains the residual ounces. If 0 then the field should read b0.0.

Agency
If a government piece, then the 3 digit agency code of the sender is placed in this field.

Sscatcod
This field is blank in “parent” records (see discussion above) , but contains the special service category code for a “child” record. These codes are found in the file named Sscatcod.dat. Some of the codes denote multiple special services, such as “8311 - Insured + restricted + return receipt”.

[image: image11.png]
[image: image12.png]
[image: image13.png]
Zip
This field contains the first three digits of the destinating zip code found in the address on the mailpiece. It is placed in the record only for zone rated mail, such as parcel post and priority.

Zone
Zone contains the numeric zone for computation of the revenue from the point of origin (test site) This field will be filled only for zone rated mail, otherwise it contains a blank.

Shortpaid
This field is used to capture revenue variance for incoming mailpieces. If the postage on the piece does not match the USPS published rate, then the piece is over- or underpaid. It is handled just like the revenue field, but note that it is only 5 bytes in length, not 9.

Overpaid
Exactly like shortpaid.

Indicia
The indicia byte is an alpha character denoting the type of indicia on the mailpiece. A table of valid indicia characters is included in the appendix. Note that certain Government agency codes produce specific indicia codes!

Auto compat
Place a l’ in this field if the mailpiece is automation compatible, a ‘0’ if it is not, and a blank if automation compatibility is not a factor.

BMC
BMC is a 1 byte field denoting whether the piece is eligible for the intra-bmc discount. Place a ‘1’ if it does, a ‘0’ if it does not, and a blank if not applicable.

Length, Width, Height, Girth
Dimension data for fourth class parcels is being obtained through the RPW system. The clerk will have to measure the parcel and enter the length width, and height, or, in the case of an irregularly shaped parcel, the length and girth. Length is a 3 byte field. The others are 2 byte fields. They are alphanumeric (numbers only and right justified.

SS_Pointer
As mentioned in the section on Parent and Child Records, the sspointer field is used to relate child (or special service(s) records) to the parent record. It is 2 bytes long, although the number in it never exceeds 9 at this point. Right justify the number and left fill with a blank.

Session
Session is used to keep track of specific periods of data collection activity. This field contains the session number at the time the record was written,

Re cord
Record refers to the sequential record number within a session.

User ID
This field contains the unique 3-digit identifying

number for each clerk.

Edit flag
This field is used to denote special circumstances. If a clerk aborts a session this field will conatin an “a”. If, on the Base Unit, an employee edits and changes a field, this field will contain an “E”, etc.

Session.rpw Data Elements
The following data elements make up Session.rpw. It is used by the data entry software to keep track of sessions. There is one unique record per session.

Finance Number
The finance number can be found in the file

Rpwsmpl.dat, which is on the initialized master

RPW data entry diskette created by the Base Unit. See

the record structure for Rpwsmpl.dat in the appendix.

Ucode
The universe code comes from Rpwsmpl.dat, same as the finance number, and occupies positions 7 - 12 of Session. rpw.

Date
Test date. in the format MMDDYY.

User ID
Data Collection Technician ID number.

Begin time
Time stamp denoting the beginning of a session.

End time
Time stamp denoting when a session is ended and “saved”.

Begin rec
This is the sequential number of the record as it is situated in the file Datafile.rpw, regardless of session. A session may start at record 35, for instance.

End rec
This is the sequential number of the record as it is situated in the file Datafile.rpw, regardless of session. A session may end at record 57, for instance.

Total weight
When performing a weighted subsampling this field will contain the total weight of the piece(s) in the test, for this session, in ounces.

Sample weight
When performing a weighted subsampling this field will contain the weight of the piece (s) in the session which were actually sampled, in ounces.

Valid byte
A “Y” in this field denotes a valid session. A “N” in this field denotes an aborted session.

DATAFILE.RPW
(97 characters + cr,lf)

 Field
Len

finance
6

ucode
6

testdate
6

version
2

time
4

blowup
4

category
4

pieces
4

revenue
9

pounds
3

ounces
4

agency
3

sscatcod
4

zip
3

zone
1

shortpaid
5

overpaid
5

indicia
1

auto compat
1

bmc
1

length
3

width
2

height
2

girth
2

sspointer
2

session
2

record
4

user_id
3

edit flag
1

cr
1

lf
1

SESSION. RPW
Field finance ucode date user id begin_time end time begin_rec end_rec total_wt sampl ewt val idbyte cr lf

AGENCY. FIL
(54 characters
cr/If)

Len

6

6

6

3

4

4

4

4

8

8

1

1

1

(45 characters + cr;1f

 Field
Len
agency code
3
agency name
40
cr
1
lf
1

BUCKET. 1ST
Field

bucket

catcode

cr

lf

BUCKET.3RD
Field

bucket

catcode

cr

lf

BUCKET. 4TH
Field

bucket

catcode

cr

lf

(19 characters ± cr/lf)

Len

15

4

1

1

(25
characters
+ cr/lf)

Len

21

4

1

1

(16
characters
+ cr/lf)

Len

13

4

1

1

BUCKET. INT
Field

bucket

catcode

cr

lf

BUCKET.CRT
Field

bucket

catcode

cr

lf

CATCODES
Field

catcode

text

cr

lf

INCOMING . DAT
Field

catcode

sscatl

sscat2

sscat3

sscat4

sscat5

sscat6 sscat7 sscat8 sscat9

ss cat 10 sscatll sscatl2 sscatl3 sscatl4 sscatl5 sscat16 sscatl7 ss cat 18 sscat19

(12 characters ± cr/lf)

Len

8

4

1

1

(15 characters + cr/lf)

Len

12

4

1

1

(68 characters + cr/If)

Len

4

64

1

1

(144 characters + cr/lf)

Len

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

sscat20

sscat2l

sscat22

sscat23

sscat24

sscat25

sscat26

sscat27

sscat2 8 sscat29

ss cat 3 0 sscat3l

ss cat 3 2 sscat33

ss cat 34 sscat3 5 cr

lf

ORIGCOD . DAT
Field

catcode

sscatl

sscat2

sscat3

sscat4

sscat5

ss cat 6 sscat7

sscat8

ss cat 9 cr

lf

ORIGINS .DAT

Field

catcode

sscatl sscat2 sscat3 sscat4 sscat5 sscat6 sscat7 sscat8 sscat9

cr lf

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

1

1

(40 characters + cr/lf)

Len

4

4

4

4

4

4

4

4

4

4

1

1

(40 characters + cr/lf)

Len

4

4

4

4

4

4

4

4

4

4

I

1

Len

4

3

1

3

1

3

1

64

1

1

ORIGREG . DAT
Field

catcode

sscatl

sscat2

sscat3

sscat4

sscat5

ss cat 6 sscat7

sscat8

sscat9 cr lf

RATES . DAT
Field fldO f 1 dl f 1 d2 fld3 f 1 d4 fld5 fld6 fld7 fld8 fld9 crlf

SSCATCOD .DAT
(40 characters + cr/lf)

Len

4

4

4

4

4

4

4

4

4

4

1

1

(40 characters + cr/lf)

Len

4

4

4

4

4

4

4

4

4

4

2

(82 characters + cr/lf)

Field

catcode

ratel_row ratel_col rate2_row rate2_col rate3_row rate3_col

text cr lf

Len

12

2

2

2

1

1

2

1

30

2

5

2

56

3

1

1

1

*
ZON
UCODE FIL
Field

ucode

text

abrev

cr

lf

RPWSMPL . DAT
(35 characters + cr/lf

Len

3

30

2

1

1

(122 characters + cr/lf */

Field

fin_ucode

testmon

testday

testyear

regcode bagcode cagcode class poname state pozip re c type unit weekday

cag cr lf

Zone files

Field

zip

zones

cr

lf

(2001 characters + cr/lf)

Len

3

1998

1

1

RPWSMPL.NDX
Field finance ucode month day year offset

(18 characters + a long integer)

Len

6

6

2

2

2

(represented as a long integer)

DBMC.DAT
Field

pozip

bmczip

cr

lf

(DBMC parcel zone table)

(6 characters + cr/If)

Len

3

3

1

1

